SHORT-TERM PHOTOVOLTAIC OUTPUT PREDICTION BASED ON MULTI-LEVEL FEATURE EXTRACTION USING BILSTM

Lin Wenting, Li Peiqiang, Jing Zhiyu, Zhong Wujun

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 284-297.

PDF(6882 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(6882 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 284-297. DOI: 10.19912/j.0254-0096.tynxb.2023-0894

SHORT-TERM PHOTOVOLTAIC OUTPUT PREDICTION BASED ON MULTI-LEVEL FEATURE EXTRACTION USING BILSTM

  • Lin Wenting1,2, Li Peiqiang3, Jing Zhiyu1,2, Zhong Wujun3
Author information +
History +

Abstract

Traditional photovoltaic (PV) prediction models are highly susceptible to fluctuations in meteorological data and exhibit low sensitivity to meteorological features. To address this, we propose a short-term PV output prediction method based on multi-level feature extraction using bi-directional long short-term memory (BiLSTM), aimed at predicting PV output under various weather conditions. Firstly, meteorological factors with high correlation to PV output are selected as input features. The fuzzy C-means (FCM) clustering method is used for flexible sample division, and the Xie-Beni index is calculated to determine the optimal number of clusters, categorizing historical data into sunny, partly cloudy, cloudy, rainy, and severe weather conditions. Next, a multi-level feature extractor (MFE) comprising CNN-CBAM-TCN is constructed: convolutional neural networks (CNN) are employed for initial feature extraction, convolutional block attention module (CBAM) is used to suppress non-essential features, and temporal convolutional networks (TCN) are utilized to capture the temporal characteristics of intra-day PV output. Finally, BiLSTM is used for PV output prediction. Case studies validate the effectiveness of using the Xie-Beni index to determine the optimal number of clusters and demonstrate that this model achieves higher prediction accuracy compared to other prediction models under complex weather conditions.

Key words

short term photovoltaic output prediction / bi-directional short-term memory network / convolutional attention blocks / time convolutional network / fuzzy C-means clustering / Xie-Beni index

Cite this article

Download Citations
Lin Wenting, Li Peiqiang, Jing Zhiyu, Zhong Wujun. SHORT-TERM PHOTOVOLTAIC OUTPUT PREDICTION BASED ON MULTI-LEVEL FEATURE EXTRACTION USING BILSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 284-297 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0894

References

[1] 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951.
DONG C, WANG Z, BAI J Y, et al.Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High voltage engineering, 2023, 49(7): 2938-2951.
[2] 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231-238.
LYU W J, FANG Y F, CHENG Z.Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power system technology, 2022, 46(1): 231-238.
[3] MILAD H S A, FAROOQ U, EL-HAWARY M E, et al. Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction[J]. IEEE access, 1037, 5: 1037-1049.
[4] 刘卫亮, 刘长良, 林永君, 等. 计及雾霾影响因素的光伏发电超短期功率预测[J].中国电机工程学报, 2018, 38(14): 4086-4095.
LIU W L, LIU C L, LIN Y J, et al.Super short-term photovoltaic power forecasting considering influence factor of smog[J]. Proceedings of the CSEE, 2018, 38(14): 4086-4095.
[5] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[6] 赵泽妮, 云斯宁, 贾凌云, 等.基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[7] MANDAL P, MADHIRA S T S, HAQUE A U, et al. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques[J]. Procedia computer science, 2012, 12(1): 332-337.
[8] CHEN Y F, WEN M, ZHANG K, et al.Short term photovoltaic output forecasting based on similar day matching and TCN-attention[J]. Electrical measurement & instrumentation, 2022, 59(10): 108-116.
[9] SUN Z H, JIANG Z H, LIU Y L, et al.Photovoltaic power prediction based on wavelet transform and optimized Elman neural network[J]. Power system and clean energy, 2022, 38(6): 98-103, 112.
[10] 刘丹, 刘方, 许彦平. 基于MIV-PSO-BPNN的光伏出力短期预测[J]. 太阳能学报, 2022, 43(6): 94-98.
LIU D, LIU F, XU Y P.Short-term photovoltaic power forecasting based on MIV-PSO-BPNN model[J]. Acta energiae solaris sinica, 2022, 43(6): 94-98.
[11] YUAN J H, XIE B B, HE B L, et al.Short term forecasting method of photovoltaic output based on DTW-VMD-PSO-BP[J]. Acta energiae solaris sinica, 2022, 43(8): 58-66.
[12] ZHU R J, GONG X J, ZHANG J J.Forecast of photovoltaic power generation based on EEMD-MPE-LSSVM[J]. China measurement & test, 2021, 47(9): 158-162.
[13] WANG S, KUI L F, ZENG L.A combined model for photovoltaic power forecasting based on GWO-SVM and random forest[J]. Journal of Kunming University of Science and Technology (natural science edition), 2021, 46(5): 82-88.
[14] 王继拓, 王万成, 陈宏伟. 基于回归-马尔科夫链的光伏发电功率预测[J]. 电测与仪表, 2019, 56(1): 76-81.
WANG J T, WANG W C, CHEN H W.Photovoltaic power generation forecasting based on regression-Markov chain[J]. Electrical measurement & instrumentation, 2019, 56(1): 76-81.
[15] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short-term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[16] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[17] MA L, HUANG W, LI K C, et al.Photovoltaic ultra-short-term power prediction model based on attention-LSTM[J]. Electrical measurement & instrumentation, 2021, 58(2): 146-152.
[18] 汤德清, 朱武, 侯林超. 基于CNN-LSTM-XGBoost模型的超短期光伏功率预测[J]. 电源技术, 2022, 46(9): 1048-1052.
TANG D Q, ZHU W, HOU L C.Ultra-short-term photovoltaic power prediction based on CNN-LSTM-XGBoost model[J]. Chinese journal of power sources, 2022, 46(9): 1048-1052.
[19] 王俊杰, 毕利, 张凯, 等. 基于多特征融合和XGBoost-LightGBM-ConvLSTM的短期光伏发电量预测[J]. 太阳能学报, 2023, 44(7): 168-174.
WANG J J, BI L, ZHANG K, et al.Short-term photovoltaic generation prediction based on multi-feature fusion and XGBoost-LightGBM-ConvLSTM[J]. Acta energiae solaris sinica, 2023, 44(7): 168-174.
[20] 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388.
WANG K Y, DU H D, JIA R, et al.Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High voltage engineering, 2022, 48(11): 4372-4388.
[21] LIU Y J, CHEN Y L, LIU J Y, et al.Ensemble learning-based day-ahead power forecasting of distributed photovoltaic generation[J]. Electric power, 2022, 55(9): 38-45.
[22] LI Z M, BAO S Q, GAO Z.Short term prediction of photovoltaic power based on FCM and CG-DBN combination[J]. Journal of electrical engineering & technology, 2019, 15: 333-341.
[23] 陈甜甜, 高亚静, 卢占会. 基于双尺度度量的改进模糊均值曲线聚类方法研究[J]. 综合智慧能源, 2022(4): 1-11.
CHEN T T, GAO Y J, LU Z H.Research on improved fuzzy mean curve clustering method based on two-scale measurement[J]. Integrated intelligent energy, 2022(4): 1-11.
[24] 毕贵红, 赵鑫, 陈臣鹏, 等. 基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测[J]. 电网技术, 2022, 46(9): 3463-3476.
BI G H, ZHAO X, CHEN C P, et al.Ultra-short-term prediction of photovoltaic power generation based on multi-channel input and PCNN-BiLSTM[J]. Power system technology, 2022, 46(9): 3463-3476.
[25] ZHAO J M, GUAN G Q, WANG H Y.Improvement of clustering algorithms based on genetic algorithms[J]. Computer engineering and applications, 2008, 164(8): 83-85.
[26] ZHOU S B, XU Z Y, TANG X Q.New method for determining optimal number of clusters in K-means clustering algorithm[J]. Computer engineering and applications, 2010, 46(16): 27-31.
[27] WOO S, PARK J, LEE J Y, et al.CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[28] 张家安, 郝峰, 董存, 等. 基于两阶段不确定性量化的光伏发电超短期功率预测[J]. 太阳能学报, 2023, 44(1): 69-77.
ZHANG J A, HAO F, DONG C, et al.Ultra-short-term power forecasting of photovoltaic power generation based on two-stage uncertainty quantization[J]. Acta energiae solaris sinica, 2023, 44(1): 69-77.
PDF(6882 KB)

Accesses

Citation

Detail

Sections
Recommended

/