ADVANCEMENTS IN HYDROGEN PRODUCTION FROM BIOMASS THERMOCHEMICAL CONVERSION

Li Pan, Ma Tengjie, Lin Yucheng, Chen Zhiyong, Chang Chun, Hu Junhao

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 645-654.

PDF(1054 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1054 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 645-654. DOI: 10.19912/j.0254-0096.tynxb.2023-0900

ADVANCEMENTS IN HYDROGEN PRODUCTION FROM BIOMASS THERMOCHEMICAL CONVERSION

  • Li Pan1~3, Ma Tengjie1,2, Lin Yucheng2,4, Chen Zhiyong2, Chang Chun2,4, Hu Junhao1~3
Author information +
History +

Abstract

A comprehensive review was conducted on the technology of hydrogen production from biomass thermochemical conversion. The review included an analysis of the influencing factors of hydrogen production through pyrolysis and reforming, gasification, and supercritical water gasification. These factors comprised raw materials, temperature, catalyst, etc., as well as the challenges faced, such as tar formation, catalyst deactivation, and input cost. It is suggested that the selection of hydrogen production methods should be based on the characteristics of the raw materials and the hydrogen production conditions. Subsequently, pretreatment and regulation of reaction conditions can be employed to enhance the efficiency of hydrogen production. A comparison of the three technologies indicates that gasification exhibits relatively higher efficiency. Additionally, gasification and pyrolysis are more suitable for biomass with low moisture content, while supercritical water gasification demonstrates advantages in the treatment of toxic wastewater. Moreover, future research directions encompass addressing tar formation, developing catalysts, and investigating equipment preparation.

Key words

biomass / hydrogen production / gasification / thermochemical conversion / pyrolysis / reforming

Cite this article

Download Citations
Li Pan, Ma Tengjie, Lin Yucheng, Chen Zhiyong, Chang Chun, Hu Junhao. ADVANCEMENTS IN HYDROGEN PRODUCTION FROM BIOMASS THERMOCHEMICAL CONVERSION[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 645-654 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0900

References

[1] 杨上明. 推动氢能产业健康有序发展助力碳达峰碳中和目标实现: 《氢能产业发展中长期规划(2021—2035年)》专家解读[J]. 中华环境, 2022(4): 31-32.
YANG S M. Promoting the healthy and orderly development of hydrogen energy industry and helping peak carbon dioxide emissions to achieve the goal of carbon neutralization:expert interpretation of the Medium and Long-term Plan for the Development of Hydrogen Energy Industry (2021-2035)[J]. China environment, 2022(4): 31-32.
[2] 张庆生, 黄雪松. 国内外氢能产业政策与技术经济性分析[J]. 低碳化学与化工, 2023, 48(2): 133-139.
ZHANG Q S, HUANG X S.Analysis of domestic and foreign hydrogen energy industrial policies and technical economy[J]. Low-carbon chemistry and chemical engineering, 2023, 48(2): 133-139.
[3] 郑结斌. 中国氯碱行业氢能利用现状及趋势分析[J]. 中国氯碱, 2023(1): 1-5.
ZHENG J B.Current situation and trend analysis of hydrogen energy utilization in China’s chlor-alkali industry[J]. China chlor-alkali, 2023(1): 1-5.
[4] 程一步. 2022年国内氢能产业发展动态及新政策对产业影响浅析[J]. 石油石化绿色低碳, 2022, 7(5): 1-6.
CHENG Y B.China’s hydrogen energy industry development and new policy implications in 2022[J]. Green petroleum & petrochemicals, 2022, 7(5): 1-6.
[5] 王明华. 新能源电解水制氢技术经济性分析[J]. 现代化工, 2023, 43(5): 1-5.
WANG M H.Technical economic analysis on hydrogen production from water electrolysis by new energy[J]. Modern chemical industry, 2023, 43(5): 1-5.
[6] 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳” 目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179.
MENG X Y, CHEN M Y, GU A L, et al.China’s hydrogen development strategy in the context of double carbon targets[J]. Natural gas industry, 2022, 42(4): 156-179.
[7] 解云翔. 中国生物质能发展现状及应用探究[J]. 化学研究, 2022, 33(6): 555-560.
XIE Y X.Exploring the current situation and applications of biomass energy development in China[J]. Chemical research, 2022, 33(6): 555-560.
[8] 尹凡, 曾德望, 邱宇, 等. 生物质热化学制氢技术研究进展[J]. 能源环境保护, 2023, 37(1): 29-41.
YIN F, ZENG D W, QIU Y, et al.Advances in biomass-based thermochemical hydrogen production technology[J]. Energy environmental protection, 2023, 37(1): 29-41.
[9] 尹正宇, 符传略, 韩奎华, 等. 生物质制氢技术研究综述[J]. 热力发电, 2022, 51(11): 37-48.
YIN Z Y, FU C L, HAN K H, et al.Review on technologies of hydrogen production from biomass[J]. Thermal power generation, 2022, 51(11): 37-48.
[10] CAO L C, YU I K M, XIONG X N, et al. Biorenewable hydrogen production through biomass gasification: a review and future prospects[J]. Environmental research, 2020, 186: 109547.
[11] 任菊荣, 苏允泓, 应浩, 等. 生物质气化制富氢合成气的研究进展[J]. 生物质化学工程, 2022, 56(3): 39-46.
REN J R, SU Y H, YING H, et al.Research progress of biomass gasification for hydrogen-rich syngas[J]. Biomass chemical engineering, 2022, 56(3): 39-46.
[12] FAHMY T Y A, FAHMY Y, MOBARAK F, et al. Biomass pyrolysis: past, present, and future[J]. Environment, development and sustainability, 2020, 22(1): 17-32.
[13] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[14] SEÇER A, KÜÇET N, FAKı E, et al. Comparison of co-gasification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production[J]. International journal of hydrogen energy, 2018, 43(46): 21269-21278.
[15] KUMAR R, STREZOV V, WELDEKIDAN H, et al.Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and sustainable energy reviews, 2020, 123: 109763.
[16] WEI L G, XU S P, ZHANG L, et al.Characteristics of fast pyrolysis of biomass in a free fall reactor[J]. Fuel processing technology, 2006, 87(10): 863-871.
[17] ZHANG Y R, LI J F, LI B L, et al.Preparation of Ni-La/Al2O3-CeO2-bamboo charcoal catalyst and its application in co-pyrolysis of straw and plastic for hydrogen production[J]. BioEnergy research, 2022, 15(3): 1501-1514.
[18] 赵振伟. 烘焙对生物质热解气化产物的影响研究[D]. 济南: 齐鲁工业大学, 2022.
ZHAO Z W.The effect of torrefaction on the products of biomass pyrolysis and gasification[D]. Ji’nan: Qilu University of Technology, 2022.
[19] KU M J, LEE D G, KIM M W, et al.Hydrogen production from acid- and ammonia-pretreated biomass[J]. Journal of mechanical science and technology, 2022, 36(10): 5243-5251.
[20] 齐鹏刚, 苏银海, 张书平, 等. 酸洗预处理对生物质热解焦物理化学特性的影响[J]. 太阳能学报, 2022, 43(8): 441-446.
QI P G, SU Y H, ZHANG S P, et al.Effect of acid washing pretreatment on physical and chemical properties of bio-char[J]. Acta energiae solaris sinica, 2022, 43(8): 441-446.
[21] DEMIRBAŞ A, ARIN G.An overview of biomass pyrolysis[J]. Energy sources, 2002, 24: 471-482.
[22] YU D L, JIN G, PANG Y J, et al.Gas characteristics of pine sawdust catalyzed pyrolysis by additives[J]. Journal of thermal science, 2021, 30(1): 333-342.
[23] DENG J, ZHOU Y J, ZHAO Y, et al.Catalytic pyrolysis of pine needle biomass over Fe-Co-K catalyst for H2-rich syngas production: influence of catalyst preparation[J]. Energy, 2022, 244: 122602.
[24] ZHAO B F, YANG H J, ZHANG H M, et al.Study on hydrogen-rich gas production by biomass catalytic pyrolysis assisted with magnetic field[J]. Journal of analytical and applied pyrolysis, 2021, 157: 105227.
[25] ARREGI A, AMUTIO M, LOPEZ G, et al.Evaluation of thermochemical routes for hydrogen production from biomass: a review[J]. Energy conversion and management, 2018, 165: 696-719.
[26] ZHANG C B.Review of catalytic reforming of biomass pyrolysis oil for hydrogen production[J]. Frontiers in chemistry, 2022, 10: 962587.
[27] 方书起, 王毓谦, 李攀, 等. 生物油催化重整制氢研究进展[J]. 化工进展, 2022, 41(3): 1330-1339.
FANG S Q, WANG Y Q, LI P, et al.Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chemical industry and engineering progress, 2022, 41(3): 1330-1339.
[28] 吴蔚, 樊啟洲, 易宝军, 等. Ni-Mg/RHA催化剂催化水蒸气焦油模型化合物重整反应研究[J]. 华中农业大学学报, 2021, 40(1): 218-226.
WU W, FAN Q Z, YI B J, et al.Steam reforming tar model compound with Ni-Mg/RHA catalyst[J]. Journal of Huazhong Agricultural University, 2021, 40(1): 218-226.
[29] GAO K, SAHRAEI O A, ILIUTA M C.Development of residue coal fly ash supported nickel catalyst for H2 production via glycerol steam reforming[J]. Applied catalysis B: environmental, 2021, 291: 119958.
[30] 谢华清, 袁佳伟, 蓝碧兰, 等. 基于双效催化剂的生物油吸附强化重整实验[J]. 东北大学学报(自然科学版), 2019, 40(12): 1721-1725.
XIE H Q, YUAN J W, LAN B L, et al.Experimental study on Bio-oil adsorption enhanced reforming by using double-effect catalysts[J]. Journal of Northeastern University (natural science), 2019, 40(12): 1721-1725.
[31] BLANQUET E, WILLIAMS P T.Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: influence of biomass components and catalyst properties[J]. Journal of analytical and applied pyrolysis, 2021, 159: 105325.
[32] SANTAMARIA L, LOPEZ G, ARREGI A, et al.Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles[J]. Applied catalysis B: environmental, 2019, 242: 109-120.
[33] KHALIFA O, XU M X, ZHANG R J, et al.Steam reforming of toluene as a tar model compound with modified nickel-based catalyst[J]. Frontiers in energy, 2022, 16(3): 492-501.
[34] YAO D D, HU Q, WANG D Q, et al.Hydrogen production from biomass gasification using biochar as a catalyst/support[J]. Bioresource technology, 2016, 216: 159-164.
[35] JINYOUNG J, GUNUNG O, WON R H, et al.Steam reforming of toluene over Ni/coal ash catalysts: effect of coal ash composition[J]. Korean chemical engineering research, 2021, 59(2): 232-238.
[36] SANTAMARIA L, ARREGI A, LOPEZ G, et al.Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming[J]. Fuel, 2020, 262: 116593.
[37] MUSSO M, VEIGA S, PERDOMO F, et al.Hydrogen production via steam reforming of small organic compounds present in the aqueous fraction of bio-oil over Ni-La-Me catalysts (Me=Ce, Ti, Zr)[J]. Biomass conversion and biorefinery, 2024, 14(2): 2421-2437.
[38] AHMED T, XIU S N, WANG L J, et al.Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound[J]. Fuel, 2018, 211: 566-571.
[39] PENG Q, TAO Y W, LING H J, et al.Tuning hydrogen and carbon nanotube production from phenol steam reforming on Ni/Fe-based nanocatalysts[J]. ACS sustainable chemistry & engineering, 2017, 5: 2098-2108.
[40] XU Q L, ZHANG Z D, HUANG K, et al.Ni supported on MgO modified attapulgite as catalysts for hydrogen production from glycerol steam reforming[J]. International journal of hydrogen energy, 2021, 46(54): 27380-27393.
[41] ZHANG Z H, QIN C L, OU Z L, et al.Resistance of Ni/perovskite catalysts to H2S in toluene steam reforming for H2 production[J]. International journal of hydrogen energy, 2020, 45(51): 26800-26811.
[42] VILLAFÁN-VIDALES H I, LOPEZ G, SANTAMARIA L, et al. An analysis of hydrogen production potential through the in-line oxidative steam reforming of different pyrolysis volatiles[J]. Journal of analytical and applied pyrolysis, 2022, 163: 105482.
[43] LOPEZ G, GARCIA I, ARREGI A, et al.Thermodynamic assessment of the oxidative steam reforming of biomass fast pyrolysis volatiles[J]. Energy conversion and management, 2020, 214: 112889.
[44] RAHIM M R, TRISASONGKO A P, MOHD JAAFAR M N, et al. Review: development of gasfication technology and its application[J]. Jurnal teknologi. 2021, 84(1): 193-210.
[45] AZIZ M, DARMAWAN A, JUANGSA F B.Hydrogen production from biomasses and wastes: a technological review[J]. International journal of hydrogen energy, 2021, 46(68): 33756-33781.
[46] 赵丽萍, 张彪, 王鑫, 等. 不同种类生物质原料的微波气化性能研究[J]. 太阳能学报, 2021, 42(9): 394-399.
ZHAO L P, ZHANG B, WANG X, et al.Study on gasification performance of different kinds of biomass with microwave heating[J]. Acta energiae solaris sinica, 2021, 42(9): 394-399.
[47] SHAYAN E, ZARE V, MIRZAEE I.Hydrogen production from biomass gasification: a theoretical comparison of using different gasification agents[J]. Energy conversion and management, 2018, 159: 30-41.
[48] ZHU G M, HUANG J Y, WAN Z, et al.Cow dung gasification process for hydrogen production using water vapor as gasification agent[J]. Processes, 2022, 10(7): 1257-1257.
[49] TEZER Ö, KARABAĞ N, ÖNGEN A, et al.Biomass gasification for sustainable energy production: a review[J]. International journal of hydrogen energy, 2022, 47(34): 15419-15433.
[50] LEPAGE T, KAMMOUN M, SCHMETZ Q, et al.Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment[J]. Biomass and bioenergy, 2021, 144: 105920.
[51] SINGH D, YADAV S, BHARADWAJ N, et al.Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: influence of steam flow rate and temperature[J]. International journal of hydrogen energy, 2020, 45(41): 20843-20850.
[52] BAKHEET S, KAMEL S, EL-SATTAR H A, et al. Different biomass gasification reactors for energy applications[C]//2018 Twentieth International Middle East Power Systems Conference(MEPCON). Cairo, Egypt, 2018: 660-665.
[53] SANGARÉ D, BELANDRIA V, BOSTYN S, et al.Pyro-gasification of lignocellulosic biomass: online quantification of gas evolution with temperature, effects of heating rate, and stoichiometric ratio[J]. Biomass conversion and biorefinery, 2024, 14(8): 9763-9775.
[54] GAI C, GUO Y C, LIU T T, et al.Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge[J]. International journal of hydrogen energy, 2016, 41(5): 3363-3372.
[55] NIU Y H, HAN F T, CHEN Y S, et al.Experimental study on steam gasification of pine particles for hydrogen-rich gas[J]. Journal of the energy institute, 2017, 90(5): 715-724.
[56] ISLAM M W.A review of dolomite catalyst for biomass gasification tar removal[J]. Fuel, 2020, 267: 117095.
[57] YU J Q, GUO Q H, GONG Y, et al.A review of the effects of alkali and alkaline earth metal species on biomass gasification[J]. Fuel processing technology, 2021, 214: 106723.
[58] 李学琴, 吴幼青, 雷廷宙, 等. 生物质焦油热解制富氢燃气的研究进展及展望[J]. 太阳能学报, 2023, 44(7): 530-535.
LI X Q, WU Y Q, LEI T Z, et al.Research progress and prospect of hydrogen-rich gas from biomass tar pyrolysis[J]. Acta energiae solaris sinica, 2023, 44(7): 530-535.
[59] 曹子昂, 王雷, 吴影, 等. 催化剂对生物质气化制氢的影响研究进展[J]. 现代化工, 2021, 41(12): 47-52.
CAO Z A, WANG L, WU Y, et al.Research progress in effect of catalysts on hydrogen production by biomass gasification[J]. Modern chemical industry, 2021, 41(12): 47-52.
[60] UMEDA K, NAKAMURA S, LU D, et al.Biomass gasification employing low-temperature carbonization pretreatment for tar reduction[J]. Biomass and bioenergy, 2019, 126: 142-149.
[61] ZENG J M, XIAO R, YUAN J.High-quality syngas production from biomass driven by chemical looping on a PY-GA coupled reactor[J]. Energy, 2021, 214: 118846.
[62] CHEN G Y, LI J, LIU C, et al.Low-temperature catalytic cracking of biomass gasification tar over Ni/HZSM-5[J]. Waste and biomass valorization, 2019, 10(4): 1013-1020.
[63] OKOLIE J A, RANA R, NANDA S, et al.Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis[J]. Sustainable energy & fuels, 2019, 3(3): 578-598.
[64] 郭磊, 王延安, 许珂, 等. 超临界水气化制氢技术多联产应用场景探究[J]. 氮肥与合成气, 2022, 50(3): 1-6.
GUO L, WANG Y A, XU K, et al.Study on the application scenario of polygeneration of hydrogen production technology by supercritical water gasification[J]. Nitrogenous fertilizer & syngas, 2022, 50(3): 1-6.
[65] CHEN J W, LIANG J M, XU Z Y, et al.Assessment of supercritical water gasification process for combustible gas production from thermodynamic, environmental and techno-economic perspectives: a review[J]. Energy conversion and management, 2020, 226: 113497.
[66] QIAN L L, WANG S Z, WANG S, et al.Supercritical water gasification and partial oxidation of municipal sewage sludge: an experimental and thermodynamic study[J]. International journal of hydrogen energy, 2021, 46(1): 89-99.
[67] ZHANG H W, GONG M, DING L, et al.Energy recovery and phosphorus phase behaviour from catalytic gasification of cyanobacterial biomass in supercritical water[J]. Biomass and bioenergy, 2020, 134: 105477.
[68] YANIK J, EBALE S, KRUSE A, et al.Biomass gasification in supercritical water: part 1. effect of the nature of biomass[J]. Fuel, 2007, 86(15): 2410-2415.
[69] LU Y J, GUO L J, ZHANG X M, et al.Hydrogen production by supercritical water gasification of biomass: explore the way to maximum hydrogen yield and high carbon gasification efficiency[J]. International journal of hydrogen energy, 2012, 37(4): 3177-3185.
[70] ZHANG X X, LIU L N, XIAO M H, et al.Insight into the thermal conversion of corn stalk gasification in supercritical water based on reactive molecular dynamics simulations[J]. Journal of the Energy Institute, 2023, 106: 101156.
[71] DEMIREL E, ERKEY C, AYAS N.Supercritical water gasification of fruit pulp for hydrogen production: effect of reaction parameters[J]. The journal of supercritical fluids, 2021, 177: 105329.
[72] FAKI E, ÜZDEN Ş T, SEÇER A, et al. Hydrogen production from low temperature supercritical water co-gasification of low rank lignites with biomass[J]. International journal of hydrogen energy, 2022, 47(12): 7682-7692.
[73] ZENG B, SHIMIZU N.Hydrogen generation from wood chip and biochar by combined continuous pyrolysis and hydrothermal gasification[J]. Energies, 2021, 14(13):3793-3793.
[74] BARATI M, BABATABAR M, TAVASOLI A, et al.Hydrogen production via supercritical water gasification of bagasse using unpromoted and zinc promoted Ru/γ-Al2O3 nanocatalysts[J]. Fuel processing technology, 2014, 123: 140-148.
[75] ABDPOUR S, SANTOS R M.Recent advances in heterogeneous catalysis for supercritical water oxidation/gasification processes: insight into catalyst development[J]. Process safety and environmental protection, 2021, 149: 169-184.
[76] WANG C, ZHU C, CAO W, et al.Catalytic mechanism study on the gasification of depolymerizing slag in supercritical water for hydrogen production[J]. International journal of hydrogen energy, 2021, 46(3): 2917-2926.
[77] WANG J W, ZHAO B F, LIU S X, et al.Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study[J]. Energy conversion and management, 2022, 254: 115246.
[78] LIU H Y, TANG Y T, MA X Q, et al.Catalytic pyrolysis of corncob with Ni/CaO catalysts for hydrogen-rich gas: synthesis modes and catalyst/biomass ratios[J]. Journal of industrial and engineering chemistry, 2023, 123: 51-61.
[79] LI B, MAGOUA MBEUGANG C F, XIE X, et al. Catalysis/CO2 sorption enhanced pyrolysis-gasification of biomass for H2-rich gas production: effects of activated carbon, NiO active component and calcined dolomite[J]. Fuel, 2023, 334: 126842.
[80] QIN W, LUO L X, CHEN S B, et al.Efficient strategy of utilizing alkaline liquid waste boosting biomass chemical looping gasification to produce hydrogen[J]. Fuel processing technology, 2021, 217: 106818.
[81] ZHANG J, NIU Y H.Biomass to hydrogen-rich syngas via tar removal from steam gasification with La1-XCeXFeO3/dolomite as a catalyst[J]. International journal of hydrogen energy, 2022, 47(52): 21997-22009.
[82] ONI B A, SANNI S E, IKHAZUANGBE P M O, et al. Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production[J]. Energy, 2021, 237: 121542.
[83] INAYAT A, KHAN Z, ASLAM M, et al.Integrated adsorption steam gasification for enhanced hydrogen production from palm waste at bench scale plant[J]. International journal of hydrogen energy, 2021, 46(59): 30581-30591.
[84] LU Y J, JIN H, ZHANG R.Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water[J]. Carbon resources conversion, 2019, 2(1): 95-101.
[85] SU W, CAI C Q, LIU P, et al.Supercritical water gasification of food waste: effect of parameters on hydrogen production[J]. International journal of hydrogen energy, 2020, 45(29): 14744-14755.
[86] BABATABAR M A, MANOUCHEHRI M, ABBASI H, et al.Supercritical water Co-gasification of biomass and plastic wastes for hydrogen-rich gas production using Ni-Cu/AC-CaO catalyst[J]. Journal of the Energy Institute, 2023, 108: 101251.
PDF(1054 KB)

Accesses

Citation

Detail

Sections
Recommended

/