COMPARISON OF WIND VIBRATION RESPONSE OF FLEXIBLE DRAGGING SUPPORT STRUCTURE AND TRADITIONAL RIGID SUPPORT STRUCTURE OF PHOTOVOLTAIC MODULES

Guo Tao, Yang Yuanming, Sun Zhen, Zhao Jianguang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 317-325.

PDF(4067 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4067 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 317-325. DOI: 10.19912/j.0254-0096.tynxb.2023-0920

COMPARISON OF WIND VIBRATION RESPONSE OF FLEXIBLE DRAGGING SUPPORT STRUCTURE AND TRADITIONAL RIGID SUPPORT STRUCTURE OF PHOTOVOLTAIC MODULES

  • Guo Tao1, Yang Yuanming1,2, Sun Zhen1, Zhao Jianguang3
Author information +
History +

Abstract

In recent years, the development of flexible support systems for photovoltaic modules has enabled photovoltaic projects to be effectively applied in disadvantaged landforms such as woodlands, slopes and canyons. In order to accurately explore the vibration characteristics of photovoltaic modules under the flexible support system, taking a project photovoltaic array as the research object, considering the influence of stable structure and load-bearing structure, the finite element models of the photovoltaic panels with traditional rigid support system and the flexible “mooring-photovoltaic panel array structure” support system respectively were established. Based on the Davenport wind spectrum, using the AR autoregressive technique to simulate the fluctuating wind load, the wind vibration response analysis was carried out. The economic benefits, wind vibration characteristics of the two support methods and the vibration effects of the stable structure on the flexible support. The result shows were compared: 1)The rigid support is mainly dominated by lateral swing, the average amplitude is about 0.5 cm, and its wind vibration coefficient is evenly distributed, the recommended value is 2.0. 2) The flexible support system mainly vibrates in the downwind direction, with an average amplitude of about 12.3 cm, which is larger than that of rigid system, and the recommended value of wind vibration coefficient is 1.7-1.8. 3)The construction cost of the flexible support system is about 40% higher than that of the traditional rigid support, but the covering area is reduced by about 32%. It shows that the flexible support is inferior to the traditional rigid support in terms of wind resistance and economy, but the advantage is mainly in the high adaptability to the terrain, and it can be used as a substitute for rigid support in inferior terrain. 4) The ground anchor drag structure has obvious restraint effect on displacement of photovoltaic panels. Therefore, the ground anchor drag structure can be appropriately added to increase the wind resistance of flexible support photovoltaic array.

Key words

photovoltaic modules / flexible support / rigid support / wind-induced vibration coefficient / mooring drag structure

Cite this article

Download Citations
Guo Tao, Yang Yuanming, Sun Zhen, Zhao Jianguang. COMPARISON OF WIND VIBRATION RESPONSE OF FLEXIBLE DRAGGING SUPPORT STRUCTURE AND TRADITIONAL RIGID SUPPORT STRUCTURE OF PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 317-325 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0920

References

[1] 牛斌, 张超, 侯巍, 等. 基于CFD方法的地面光伏阵列风压时程特性研究[J]. 太阳能学报, 2016, 37(7): 1774-1779.
NIU B, ZHANG C, HOU W, et al.Time history analysis of wind load on arrayed solar panels based on CFD simulations[J]. Acta energiae solaris sinica, 2016, 37(7): 1774-1779.
[2] 谢丹, 范军. 预应力柔性光伏支承体系风振分析[J]. 建筑结构, 2021, 51(21): 15-18.
XIE D, FAN J.Wind vibration analysis of prestressed flexible photovoltaic support system[J]. Building structure, 2021, 51(21): 15-18.
[3] 龚敏, 欧添雁. 单个屋面光伏组件风载体型系数风洞试验研究[J]. 安徽建筑, 2015, 22(6): 183-184, 196.
GONG M, OU T Y.Research on wind tunnel test of shape coefficient of wind load for photovoltaic module with single roof[J]. Anhui architecture, 2015, 22(6): 183-184, 196.
[4] LIU M, LI Q S, HUANG S H, et al.Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 179: 39-57.
[5] 马文勇, 马成成, 王彩玉, 等. 光伏阵列风荷载干扰效应风洞试验研究[J]. 实验流体力学, 2021, 35(4): 19-25.
MA W Y, MA C C, WANG C Y, et al.Wind tunnel experimental study on the wind load interference effect of solar panel arrays[J]. Journal of experiments in fluid mechanics, 2021, 35(4): 19-25.
[6] 张爱社, 高翠兰, 申成军, 等. 屋面光伏板风荷载特性数值分析[J]. 计算力学学报, 2016, 33(5): 683-688, 737.
ZHANG A S, GAO C L, SHEN C J, et al.Numerical analysis of wind load characteristics of photovoltaic panels mounted on a roof[J]. Chinese journal of computational mechanics, 2016, 33(5): 683-688, 737.
[7] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931-1937.
GAO L, DOU Z Z, BAI H, et al.Analysis of influence factors for wind lode of PV module[J]. Acta energiae solaris sinica, 2016, 37(8): 1931-1937.
[8] 周炜, 何斌, 蔡晶, 等. 一类光伏电站架构体系的风荷载特性及折减分析[J]. 结构工程师, 2018, 34(2): 86-94.
ZHOU W, HE B, CAI J, et al.Wind load characteristics and reduction analysis of a structural system of photovoltaic power station[J]. Structural engineers, 2018, 34(2): 86-94.
[9] 许宁, 李旭辉, 高晨崇, 等. 光伏系统风荷载体型系数分析[J]. 太阳能学报, 2021, 42(10): 17-22.
XU N, LI X H, GAO C C, et al.Analysis of shape coefficients of wind loads of photovoltaic system[J]. Acta energiae solaris sinica, 2021, 42(10): 17-22.
[10] 王彩玉, 马文勇, 韩晓乐, 等. 女儿墙对平屋面阵列光伏板风荷载的影响[J]. 工程力学, 2021, 38(增刊1): 216-222.
WANG C Y, MA W Y, HAN X L, et al.Effect of parapet on wind load of flat roof array solar pannel[J]. Engineering mechanics, 2021, 38(Sup 1): 216-222.
[11] 李煜雯, 李诗源, 徐路遥, 等. 光伏板间距对近表面流场和沙尘沉积量的影响[J]. 应用力学学报, 2021, 38(4): 1745-1752.
LI Y W, LI S Y, XU L Y, et al.The influence of the distance between two photovoltaic panels on the near-surface flow field and dust deposition[J]. Chinese journal of applied mechanics, 2021, 38(4): 1745-1752.
[12] 王京学, 杨庆山, 刘敏, 等. 平屋盖及双坡屋盖光伏系统风荷载特性试验研究[J]. 建筑结构学报, 2018, 39(10): 21-28.
WANG J X, YANG Q S, LIU M, et al.Experimental research on characteristics of wind loads of solar arrays mounted on flat and gable roofs[J]. Journal of building structures, 2018, 39(10): 21-28.
[13] 吴剑国, 何健, 张建胜, 等. 光伏组件及其支撑框架风振响应分析[J]. 浙江建筑, 2013, 30(1): 16-19, 27.
WU J G, HE J, ZHANG J S, et al.Wind vibration response analysis of photovoltaic components and bracing frames[J]. Zhejiang construction, 2013, 30(1): 16-19, 27.
[14] 吕天杰, 吕海峰. 一种预应力索支承光伏支架系统: CN207010598U[P].2018-02-13.
LYU T J, LYU H F. The utility model relates to a solar photovoltaic support system with prestressed cable: CN207010598U[P].2018-02-13.
[15] 徐志宏, 侯国华, 张志强, 等. 鱼腹式光伏索桁架风振系数数值分析[J]. 太阳能, 2019(2): 46-49, 18.
XU Z H, HOU G H, ZHANG Z Q, et al.Numerical analysis of wind-induced vibration coefficient of fish-belt PV cable truss[J]. Solar energy, 2019(2): 46-49, 18.
[16] 周杰, 杜金娥, 徐佳骆, 等. 山区地形下光伏柔性支架预应力索设计分析[C]//2020年工业建筑学术交流会论文集(下册). 北京, 中国, 2020: 375-379.
ZHOU J, DU J E, XU J L, et al.Design and analysis of prestressed cables of photovoltaic cell flexible supports in mountainous terrain[C]//Proceedings of the 2020 Industrial Architecture Academic Exchange Conference (Volume 2). Beijng, China, 2020: 375-379.
[17] 马文勇, 柴晓兵, 赵怀宇, 等. 基于偏心风荷载分布模型的柔性支撑索分配系数研究[J]. 振动与冲击, 2021, 40(12): 305-310.
MA W Y, CHAI X B, ZHAO H Y, et al.A study on distribution coefficient of a flexible photovoltaic support cable based on an eccentric moment wind load distribution model[J]. Journal of vibration and shock, 2021, 40(12): 305-310.
[18] 马文勇, 柴晓兵, 马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18.
MA W Y, CHAI X B, MA C C.Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(11): 10-18.
[19] 方媛, 何斌. 柔性绳索预拉力作用下太阳能光伏阵列流固耦合颤振特性仿真[C]//中国力学大会论文集(CCTAM 2019). 杭州, 中国, 2019: 2537-2548.
FANG Y, HE B.Fluid-solid coupling flutter characteristics simulation of solar photovoltaic arrays under pre-tensioning of flexible ropes[C]//The Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2019). Hangzhou, China, 2019: 2537-2548.
[20] 刘兴佳, 崔国桥, 于恺, 等. 太阳能光伏柔性支架体系研究[J]. 中国新技术新产品, 2020(2): 79-81.
LIU X J, CUI G Q, YU K, et al.Study on flexible support system of solar photovoltaic system[J]. New technology & new products of China, 2020(2): 79-81.
[21] 胡剑强, 康崇皓, 朱宏润, 等. 城轨柔性直流牵引供电系统光伏发电并入方式研究[J]. 北京交通大学学报, 2021, 45(1): 111-118.
HU J Q, KANG C H, ZHU H R, et al.Research on grid connection mode of photovoltaic power generation for urban rail flexible DC traction power supply systems[J]. Journal of Beijing Jiaotong University, 2021, 45(1): 111-118.
[22] 宁勇平, 袁翼轸, 张果, 等. 基于柔性支架的光伏电站的研究与设计[J]. 农村电气化, 2021(3): 55-59.
NING Y P, YUAN Y Z, ZHANG G, et al.Research and design of photovoltaic power station based on flexible supports[J]. Rural electrification, 2021(3): 55-59.
[23] 王泽国, 赵菲菲, 吉春明, 等. 多排多跨柔性光伏支架的风致振动分析[J]. 武汉大学学报(工学版), 2021, 54(增刊2): 75-79.
WANG Z G, ZHAO F F, JI C M, et al.Wind-induced vibration analysis of multi-row and multi-span flexible photovoltaic support[J]. Engineering journal of Wuhan University, 2021, 54(Sup 2): 75-79.
[24] 王泽国, 赵菲菲, 吉春明, 等. 多排大跨度柔性光伏支架的振动控制研究[J]. 武汉大学学报(工学版), 2020, 53(增刊1): 29-34.
WANG Z G, ZHAO F F, JI C M, et al.Analysis of vibration control of multi-row large-span flexible photovoltaic supports[J]. Engineering journal of Wuhan University, 2020, 53(Sup 1): 29-34.
[25] 郭涛, 杨渊茗, 黄国强, 等. 山区峡谷地形下柔性支撑光伏阵列的风振特性研究[J]. 太阳能学报, 2023, 44(11): 31-40.
GUO T, YANG Y M, HUANG G Q, et al.Wind-induced vibration analysis of flexible photovoltaic support structure under mountain canyon terrain[J]. Acta energiae solaris sinica, 2023, 44(11): 31-40.
[26] DAVENPORT A G.The application of statistical concepts to the wind loading of structures[J]. Proceedings of the institution of civil engineers, 1961, 19(4): 449-472.
[27] 张相庭. 工程抗风设计计算手册[M]. 北京: 中国建筑工业出版社, 1998.
ZHANG X T.Handbook of engineering wind-resistant design and calculation[M]. Beijing: China Architecture & Building Press, 1998.
PDF(4067 KB)

Accesses

Citation

Detail

Sections
Recommended

/