PREDICTIVE OPTIMIZATION CONTROL OF WIND FARM POWER MODEL CONSIDERING OPERATING ECONOMY AND SAFETY

Yang Yanxia, Li Shaolin, Wang Weisheng, Qin Shiyao, Miao Fenglin

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 521-528.

PDF(2318 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2318 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 521-528. DOI: 10.19912/j.0254-0096.tynxb.2023-0931

PREDICTIVE OPTIMIZATION CONTROL OF WIND FARM POWER MODEL CONSIDERING OPERATING ECONOMY AND SAFETY

  • Yang Yanxia, Li Shaolin, Wang Weisheng, Qin Shiyao, Miao Fenglin
Author information +
History +

Abstract

The wind farm's power control structure and process are introduced in this paper. Fristly, a linearized power control model for model predictive control is established with an analysis of the dynamic characteristics of each control object within the wind farm. Subsequently, a strategy for coordinated and predictive control of active and reactive power models in wind farm is proposed. This strategy aims to minimize the load change of the wind turbine transmission chain, the voltage variation across each wind turbine, and the active and reactive power losses within the wind farm. Furthermore, the model predictive control algorithm is elucidated. Finally, a wind farm simulation model is established within Matlab/Simulink. Simulation results demonstrate that the proposed control strategy can accurately adhere to the power generation tasks and voltage commands issued by power grid dispatching. Concurrently, it reduces the active and reactive power losses of the wind farm and the drive train fatigue load of each wind turbine, enhancing the operational safety and economy of the wind turbine.

Key words

wind power / active power control / reactive power control / fatigue load / wind farm losses

Cite this article

Download Citations
Yang Yanxia, Li Shaolin, Wang Weisheng, Qin Shiyao, Miao Fenglin. PREDICTIVE OPTIMIZATION CONTROL OF WIND FARM POWER MODEL CONSIDERING OPERATING ECONOMY AND SAFETY[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 521-528 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0931

References

[1] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下 “能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3125.
XIN B A, SHAN B G, LI Q H, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3125.
[2] 蔡游明, 李征, 蔡旭. 以并网点电压和机端电压平稳性为目标的风电场无功电压协调控制[J]. 电力自动化设备, 2018, 38(8):166-173.
CAI Y M, LI Z, CAI X.Coordinated control of reactive power and voltage for wind farm aiming at voltage stability of PCC and generator terminal[J]. Electric power automation equipment, 2018, 38(8): 166-173.
[3] GB/T 19963—2011,风电场接入电力系统技术规定[S].
GB/T 19963—2011,Technical rule for connecting wind farm to power system[S].
[4] RODRIGUEZ-AMENEDO J L, ARNALTE S, BURGOS J C. Automatic generation control of a wind farm with variable speed wind turbines[J]. IEEE transactions on energy conversion, 2002, 17(2): 279-284.
[5] 梅华威, 米增强, 李聪, 等. 采用机组风速信息动态分类的风电场有功控制策略[J]. 中国电机工程学报, 2014, 34(34): 6058-6065.
MEI H W, MI Z Q, LI C, et al.An active control strategy based on wind speed information dynamic classification for WTGS in wind farm[J]. Proceedings of the CSEE, 2014, 34(34): 6058-6065.
[6] 邹见效, 李丹, 郑刚, 等. 基于机组状态分类的风电场有功功率控制策略[J]. 电力系统自动化, 2011, 35(24): 28-32.
ZOU J X, LI D, ZHENG G, et al.An active power control scheme for wind farms based on state classification algorithm[J]. Automation of electric power systems, 2011, 35(24): 28-32.
[7] 栗然, 唐凡, 刘英培, 等. 双馈电机风电场等裕度无功分配策略[J].中国电力,2011,44(8): 57-61.
LI R, TANG F, LIU Y P, et al.Reactive power distribution in equivalent margin of a wind farm with doubly fed induction generators[J]. Electric power, 2011, 44(8): 57-61.
[8] GUO Y F, GAO H L, WU Q W, et al.Coordinated voltage control scheme for VSC-HVDC connected wind power plants[J]. IET renewable power generation, 2018, 12(2): 198-206.
[9] 李桂丹, 王佳琦, 靳新悦, 等. 风电场内部无功分配优化策略[J]. 电力系统及其自动化学报, 2019, 31(7): 123-128.
LI G D, WANG J Q, JIN X Y, et al.Optimization strategy for reactive power allocation in wind farm[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 123-128.
[10] 赵永兵. 风电场有功分配及无功优化研究[D]. 沈阳: 沈阳工业大学, 2016.
ZHAO Y B.Research on active power distribution and reactive power optimization of wind farm[D]. Shenyang: Shenyang University of Technology, 2016.
[11] 荣飞, 李培瑶, 周诗嘉. 双馈风电场损耗最小化的有功无功协调优化控制[J]. 电工技术学报, 2020, 35(3): 520-529.
RONG F, LI P Y, ZHOU S J.Coordinated optimal control with loss minimization for active and reactive power of doubly fed induction generator-based wind farm[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 520-529.
[12] ZHAO H R, WU Q W, WANG J H, et al.Combined active and reactive power control of wind farms based on model predictive control[J]. IEEE transactions on energy conversion, 2017, 32(3): 1177-1187.
[13] 秦世耀. 风电机组惯量及一次调频优化控制研究[D]. 南京: 东南大学, 2021.
QIN S Y.Research on inertia and primary frequency modulation optimal control of wind turbine[D]. Nanjing: Southeast University, 2021.
[14] 秦世耀, 杨彦霞, 李少林, 等. 考虑经济性与安全性的风电场功率协调控制方法和系统: CN202111195266.2[P].2022-02-18.
QIN S Y, YANG Y X, LI S L.et al. A coordinated control method and system for wind farm power considering economy and safety: CN202111195266.2[P].2022-02-18.
[15] 肖运启, 张晓航, 苗田银, 等. 基于多Agent协作控制的风电场功率调度策略[J]. 太阳能学报, 2018, 39(7): 2003-2011.
XIAO Y Q, ZHANG X H, MIAO T Y, et al.Wind farm power dispatching control strategy based on multi-agent system[J]. Acta energiae solaris sinica, 2018, 39(7): 2003-2011.
[16] 秦世耀, 李少林, 王瑞明, 等. 风电机组传动链柔性建模及电网故障响应特性研究[J]. 太阳能学报, 2015, 36(3): 727-733.
QIN S Y, LI S L, WANG R M, et al.Study on flexible modeling of wind turbine drive train and dynamic response of grid fault[J]. Acta energiae solaris sinica, 2015, 36(3): 727-733.
[17] 丁明, 王冬君, 韩平平, 等. 风力发电传动系统通用化建模方法研究[J]. 电网技术, 2013, 37(10): 2881-2887.
DING M, WANG D J, HAN P P, et al.Research on generalized modeling method of wind power drive-train system[J]. Power system technology, 2013, 37(10): 2881-2887.
[18] 贾锋, 蔡旭, 李征, 等. 风电机组精细化建模及硬件在环实时联合仿真[J]. 中国电机工程学报, 2017, 37(4): 1239-1250.
JIA F, CAI X, LI Z, et al.Refined modeling of wind energy conversion systems and real-time Co-simulation with Hardware-in-loop[J]. Proceedings of the CSEE, 2017, 37(4): 1239-1250.
[19] WANG X D, WANG Y W, LIU Y M.Dynamic load frequency control for high-penetration wind power considering wind turbine fatigue load[J]. International journal of electrical power & energy systems, 2020, 117: 105696.
PDF(2318 KB)

Accesses

Citation

Detail

Sections
Recommended

/