INTERPRETATION METHOD FOR SOIL COMPRESSION MODULUS OF OFFSHORE WIND POWER PROJECT IN ZHEJIANG AND JIANGSU BASED ON CPTU

Wang Kuanjun, Jia Zhiyuan, Shen Kanmin, Li Yuping

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 544-553.

PDF(1287 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1287 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 544-553. DOI: 10.19912/j.0254-0096.tynxb.2023-0944

INTERPRETATION METHOD FOR SOIL COMPRESSION MODULUS OF OFFSHORE WIND POWER PROJECT IN ZHEJIANG AND JIANGSU BASED ON CPTU

  • Wang Kuanjun1, Jia Zhiyuan2, Shen Kanmin3, Li Yuping2
Author information +
History +

Abstract

In this paper, based on offshore wind power projects in Zhejiang Jiaxing and Jiangsu Yancheng offshore area, one-dimensional consolidation tests and piezocone penetration tests (CPTU) were carried out. The relationship between the compression modulus Es and the corrected cone tip resistance qt was established by linear, exponential and logarithmic models. It is found that the correlation between Es considering effective in-situ stress and qt is much better than that between compression modulus Es1-2 corresponding to the consolidation stress of 100-200 kPa and qt. The linear fitting formulae between the compression modulus Es and qt of clayey soil are more reliable, where the empirical coefficients α of clayey soil in Jiaxing and Yancheng offshore areas are 1.820 and 3.315, respectively. There is no obvious correlation between Es and qt of sand in both offshore areas, the results show that the lower limit of Es of sand in both offshore areas are 10 MPa.

Key words

offshore wind farms / geotechnical engineering / soils / piezocone penetration test / compression modulus

Cite this article

Download Citations
Wang Kuanjun, Jia Zhiyuan, Shen Kanmin, Li Yuping. INTERPRETATION METHOD FOR SOIL COMPRESSION MODULUS OF OFFSHORE WIND POWER PROJECT IN ZHEJIANG AND JIANGSU BASED ON CPTU[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 544-553 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0944

References

[1] 白旭. 中国海上风电发展现状与展望[J]. 船舶工程, 2021, 43(10): I0012-I0015.
BAI X.Development status and prospect of offshore wind power in China[J]. Ship engineering, 2021, 43(10): I0012-I0015.
[2] 翟恩地, 徐海滨, 郭胜山, 等. 响水海上风电钢管桩基础水平承载特性对比研究[J]. 太阳能学报, 2019, 40(3): 681-686.
ZHAI E D, XU H B, GUO S S, et al.Comparative study on horizontal bearing capacity of steel pipe pile for Xiangshui offshore wind farm[J]. Acta energiae solaris sinica, 2019, 40(3): 681-686.
[3] 时智勇, 王彩霞, 李琼慧. “十四五” 中国海上风电发展关键问题[J]. 中国电力, 2020, 53(7): 8-17.
SHI Z Y, WANG C X, LI Q H.Key issues of China’s offshore wind power development in the“14th Five-Year Plan”[J]. Electric power, 2020, 53(7): 8-17.
[4] 姬付全, 经绯, 刘志彬, 等. 孔压静力触探(CPTU)确定地基土压缩模量方法研究[J]. 工程地质学报, 2011, 19(6): 882-886.
JI F Q, JING F, LIU Z B, et al.Determination of compressive modulus for foundation soils from the piezocone penetration test (CPTU)[J]. Journal of engineering geology, 2011, 19(6): 882-886.
[5] 夏玉斌, 曹中兴, 王清. 滨海区海相沉积土压缩模量的试验研究[J]. 工程地质学报, 2013, 21(3): 464-469.
XIA Y B, CAO Z X, WANG Q.In-situ and laboratory tests for determination of compression modulus of coastal soft soil[J]. Journal of engineering geology, 2013, 21(3): 464-469.
[6] 王宽君, 沈侃敏, 汪明元, 等. 黄海海域风电工程软弱海床强度CPTU原位解译方法[J]. 太阳能学报, 2023, 44(2): 99-108.
WANG K J, SHEN K M, WANG M Y, et al.CPTU interpretation method of weak seabed strength of offshore wind power project in Yellow Sea Area[J]. Acta energiae solaris sinica, 2023, 44(2): 99-108.
[7] 姜贞强, 何奔, 单治钢, 等. 黄海海域极端荷载下海上风力机结构累积变形及疲劳性状: 3种典型基础对比研究[J]. 太阳能学报, 2021, 42(4): 386-395.
JIANG Z Q, HE B, SHAN Z G, et al.Cumulative deformation and fatigue behaviour of offshore wind turbine structure subjected under extreme loading in Yellow Sea—a comparative study between three typical foundations[J]. Acta energiae solaris sinica, 2021, 42(4): 386-395.
[8] 蒋鑫, 蒋怡, 梁雪娇, 等. 软土地基高速公路路基拓宽改建全过程变形特性数值模拟[J]. 铁道科学与工程学报, 2015, 12(5): 1039-1046.
JIANG X, JIANG Y, LIANG X J, et al.Numerical simulation on deformation behaviors for widened expressway embankment over soft ground[J]. Journal of railway science and engineering, 2015, 12(5): 1039-1046.
[9] 王宽君, 贾志远, 沈侃敏, 等. 台州滨海软黏土强度特性室内外联合标定[J]. 岩土力学, 2023, 44(10): 2851-2859.
WANG K J, JIA Z Y, SHEN K M, et al.Joint laboratory and in situ calibration of strength characteristics for Taizhou coastal soft clay[J]. Rock and soil mechanics, 2023, 44(10): 2851-2859.
[10] SANGLERAT G.The penetrometer and soil exploration[M]. Elsevier, 1972.
[11] SENNESET K, SANDVEN R, JANBU N.Evaluation of soil parameters from piezocone tests[J]. Transportation research record, 1989: 24-37.
[12] LIU S Y, CAI G J, PUPPALA A J, et al.Prediction of embankment settlements over marine clay using piezocone penetration tests[J]. Bulletin of engineering geology and the environment, 2011, 70(3): 401-409.
[13] 童立元, 涂启柱, 杜广印, 等. 应用孔压静力触探(CPTU)确定软土压缩模量的试验研究[J]. 岩土工程学报, 2013, 35(增刊2): 569-572.
TONG L Y, TU Q Z, DU G Y, et al.Determination of confined compression modulus of soft clay using piezocone penetration tests[J]. Chinese journal of geotechnical engineering, 2013, 35(S2): 569-572.
[14] GB/T 50123—2019, 土工试验方法标准[S].
GB/T 50123—2019, Standard for geotechnical testing method[S].
[15] LUNNE T, ROBERTSON P K, POWELL J J M. Cone penetration testing in geotechnical practice[M]. London: Blackie Academic & Professional, 1997.
[16] 刘松玉, 蔡国军, 童立元. 现代多功能CPTU技术理论与工程应用[M]. 北京: 科学出版社, 2013.
LIU S Y, CAI G J, TONG L Y.Theory and engineering application of modern multifunctional CPTU technology[M]. Beijing: Science Press, 2013.
[17] JONES G A, RUST E.Piezocone settlement prediction parameters for embankments on alluvium[C]//Proceedings of the International Symposium on Penetration Testing, CPT95, 1995, 2: 501-508.
PDF(1287 KB)

Accesses

Citation

Detail

Sections
Recommended

/