LOCATION AND CAPACITY DETERMINATION METHOD OF DISTRIBUTED GENERATION IN DISTRIBUTION NETWORK BASED ON ICOA ALGORITHM

Pang Guangming, Wang Pengfei, Tian Chao, Yang Bo

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 211-219.

PDF(1105 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1105 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 211-219. DOI: 10.19912/j.0254-0096.tynxb.2023-0952

LOCATION AND CAPACITY DETERMINATION METHOD OF DISTRIBUTED GENERATION IN DISTRIBUTION NETWORK BASED ON ICOA ALGORITHM

  • Pang Guangming, Wang Pengfei, Tian Chao, Yang Bo
Author information +
History +

Abstract

In response to the optimization configuration problem of distributed generation (DG) in the distribution network, this article considers the impact of the number of DG connections and different power factors on the active power loss and bus voltage distribution in the distribution network, and proposes a DG location and capacity determination strategy based on the improved chimpanzee optimization algorithm (ICOA). Firstly, a DG location and capacity optimization model is established with the goal of minimizing active power loss, maximizing voltage stability index, and minimizing average loss during system operation; Then, considering the impact of the number of DG connections on the optimization operation indicators of the distribution network, the CPLEX solver is used to determine the optimal number of DG connections; On this basis, taking into account the two application scenarios of integrated power factor access and variable power factor access for DG, ICOA is used to solve the DG location and capacity model; Finally, simulation verification analysis is conducted using the IEEE-33 node distribution system. The results show that compared to DG with integrated power factor, DG with variable power factor can further reduce active power loss and improve bus voltage distribution during system operation; Compared with traditional algorithms, the improved algorithm has higher convergence accuracy and can effectively solve the multi-objective optimization problem of DG location and capacity.

Key words

distributed generation / distribution network / optimization algorithm / power factor / site selection

Cite this article

Download Citations
Pang Guangming, Wang Pengfei, Tian Chao, Yang Bo. LOCATION AND CAPACITY DETERMINATION METHOD OF DISTRIBUTED GENERATION IN DISTRIBUTION NETWORK BASED ON ICOA ALGORITHM[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 211-219 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0952

References

[1] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
XIN B A, SHAN B G, LI Q H, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[2] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[3] 葛少云, 侯亭玉, 吴鸣, 等. 柔性互联配电网分布式电源承载能力分布鲁棒优化模型[J]. 电力系统自动化, 2023, 47(13): 140-148.
GE S Y, HOU T Y, WU M, et al.Distributionally robust optimization model of hosting capability for distributed generators in flexible interconnected distribution network[J]. Automation of electric power systems, 2023, 47(13): 140-148.
[4] 孙亮, 杨远, 张程, 等. 分布式电源接入配电网的配电终端优化配置[J]. 太阳能学报, 2021, 42(5): 120-125.
SUN L, YANG Y, ZHANG C, et al.Distribution terminal optimal design for distributed generation accessing distribution network[J]. Acta energiae solaris sinica, 2021, 42(5): 120-125.
[5] 肖浩, 裴玮, 邓卫, 等. 分布式电源对配电网电压的影响分析及其优化控制策略[J]. 电工技术学报, 2016, 31(增刊1): 203-213.
XIAO H, PEI W, DENG W, et al.Analysis of the impact of distributed generation on distribution network voltage and its optimal control strategy[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 203-213.
[6] 郑焕坤, 曾凡斐, 傅钰, 等. 基于E-C-K-均值聚类和SOP优化的分布式电源双层规划[J]. 太阳能学报, 2022, 43(2): 127-135.
ZHENG H K, ZENG F F, FU Y, et al.Bi-level distributed power planning based on E-C-K-means clustering and sop optimization[J]. Acta energiae solaris sinica, 2022, 43(2): 127-135.
[7] 徐迅, 陈楷, 龙禹, 等. 考虑环境成本和时序特性的微网多类型分布式电源选址定容规划[J]. 电网技术, 2013, 37(4): 914-921.
XU X, CHEN K, LONG Y, et al.Optimal site selection and capacity determination of multi-types of distributed generation in microgrid considering environment cost and timing characteristics[J]. Power system technology, 2013, 37(4): 914-921.
[8] 张沈习, 李珂, 程浩忠, 等. 考虑相关性的间歇性分布式电源选址定容规划[J]. 电力系统自动化, 2015, 39(8): 53-58, 140.
ZHANG S X, LI K, CHENG H Z, et al.Optimal siting and sizing of intermittent distributed generator considering correlations[J]. Automation of electric power systems, 2015, 39(8): 53-58, 140.
[9] GÜMÜŞ T E, EMIROGLU S, ALI YALCIN M. Optimal DG allocation and sizing in distribution systems with Thevenin based impedance stability index[J]. International journal of electrical power & energy systems, 2023, 144: 108555.
[10] SHARMA S, BHATTACHARJEE S, BHATTACHARYA A.Quasi-Oppositional Swine Influenza Model Based Optimization with Quarantine for optimal allocation of DG in radial distribution network[J]. International journal of electrical power & energy systems, 2016, 74: 348-373.
[11] AMAN M M, JASMON G B, BAKAR A H A, et al. A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm[J]. Energy, 2014, 66: 202-215.
[12] SULTANA U, KHAIRUDDIN A B, MOKHTAR A S, et al.Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system[J]. Energy, 2016, 111: 525-536.
[13] 李珂, 邰能灵, 张沈习, 等. 考虑相关性的分布式电源多目标规划方法[J]. 电力系统自动化, 2017, 41(9): 51-57, 199.
LI K, TAI N L, ZHANG S X, et al.Multi-objective planning method of distributed generators considering correlations[J]. Automation of electric power systems, 2017, 41(9): 51-57, 199.
[14] 杨扬, 王彤. 基于多目标双层规划的分布式电源选址定容[J]. 华北电力大学学报(自然科学版), 2024, 51(2): 21-30.
YANG Y, WANG T.Optimal siting and sizing of distributed generators based on multi-objective double-layer planning[J]. Journal of North China Electric Power University, 2024, 51(2): 21-30.
[15] 蔡国伟, 刘旭, 张旺, 等. 基于改进灰狼优化算法的分布式电源优化配置[J]. 太阳能学报, 2019, 40(1): 134-141.
CAI G W, LIU X, ZHANG W, et al.Optimal configuration of distributed generation based on improved grey optimization algorithm[J]. Acta energiae solaris sinica, 2019, 40(1): 134-141.
[16] 马丽叶, 王海锋, 卢志刚. 计及故障率影响含电动汽车的分布式电源选址定容双层协调规划[J]. 电网技术, 2021, 45(12): 4749-4760.
MA L Y, WANG H F, LU Z G.Double-layer coordinated planning for location and capacity of distributed power supply with electric vehicles considering failure rate[J]. Power system technology, 2021, 45(12): 4749-4760.
[17] 蔡浩, 施凯, 唐静, 等. 基于改进蚁狮优化算法的可再生能源分布式电源优化配置[J]. 电测与仪表, 2022, 59(11): 88-95.
CAI H, SHI K, TANG J, et al.Optimal configuration of renewable energy distributed power generation based on improved ant-lion optimization algorithm[J]. Electrical measurement & instrumentation, 2022, 59(11): 88-95.
[18] ELSEIFY M A, KAMEL S, ABDEL-MAWGOUD H, et al.A novel approach based on honey badger algorithm for optimal allocation of multiple DG and capacitor in radial distribution networks considering power loss sensitivity[J]. Mathematics, 2022, 10(12): 2081.
[19] FERMINUS RAJ A, GNANA SARAVANAN A.An optimization approach for optimal location & size of DSTATCOM and DG[J]. Applied energy, 2023, 336: 120797.
[20] 黄倩, 刘升, 李萌萌, 等. 多策略黑猩猩优化算法研究及其工程应用[J]. 计算机工程与应用, 2022, 58(19): 174-183.
HUANG Q, LIU S, LI M M, et al.Multi-strategy chimp optimization algorithm and its application of engineering problem[J]. Computer engineering and applications, 2022, 58(19): 174-183.
[21] JIA H M, SUN K J, ZHANG W Y, et al.An enhanced chimp optimization algorithm for continuous optimization domains[J]. Complex & intelligent systems, 2022, 8(1): 65-82.
[22] 贾鹤鸣, 林建凯, 吴迪, 等. 融合学习行为策略的改进黑猩猩优化算法[J]. 计算机工程与应用, 2023,59(16):82-92.
JIA H M, LIN J K, WU D, et al.Modified chimp optimization algorithm based on learning behavior strategy[J]. Computer engineering and applications, 2023,59(16): 82-92.
[23] EHSAN A, YANG Q.Optimal integration and planning of renewable distributed generation in the power distribution networks: a review of analytical techniques[J]. Applied energy, 2018, 210: 44-59.
[24] MURTHY V V S N, KUMAR A. Comparison of optimal DG allocation methods in radial distribution systems based on sensitivity approaches[J]. International journal of electrical power & energy systems, 2013, 53: 450-467.
[25] JOHN G, WILLIAM S.Power system analysis[M]. North Carolina State University,1994.
PDF(1105 KB)

Accesses

Citation

Detail

Sections
Recommended

/