CORROSION BEHAVIOR OF AUSTENITIC STEELS IN SUPERCRITICAL CO2 POWER GENERATION SYSTEM

Deng Zhongyue, Yang Pu, Wang Yueshe, Wang Bowei, Zou Lin

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 400-406.

PDF(2030 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2030 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 400-406. DOI: 10.19912/j.0254-0096.tynxb.2023-0954

CORROSION BEHAVIOR OF AUSTENITIC STEELS IN SUPERCRITICAL CO2 POWER GENERATION SYSTEM

  • Deng Zhongyue, Yang Pu, Wang Yueshe, Wang Bowei, Zou Lin
Author information +
History +

Abstract

The power generation system with supercritical carbon dioxide (SCO2) as the working medium is a prospect technology in the field of concentration solar power. To investigate the corrosion behavior of typical materials in supercritical carbon dioxide power generation system, the corrosion experiment of austenitic steel samples of 316L and 321 exposed in SCO2 atmosphere at the temperature of 550 ℃ and the pressure of 25 MPa for 2000 h was conducted. The experimental results show that oxidation corrosion occurred in austenitic steel samples and 321 exhibits better corrosion resistance than 316L. The corrosion kinetics approximately follows a parabolic law. Both 321 and 316L forms a double oxide layer with chrome-rich scale and manganese chrome-spinel on the inside and iron-rich oxide nodules on the outside. In addition, carbon is mainly deposited on the surface of corrosion products while no carburizing phenomenon is found inside the material. Meanwhile, the corrosion mechanism model of austenitic steels is fabricated.

Key words

solar thermal power generation / austenitic steel / supercritical carbon dioxide / corrosion behavior / corrosion mechanism

Cite this article

Download Citations
Deng Zhongyue, Yang Pu, Wang Yueshe, Wang Bowei, Zou Lin. CORROSION BEHAVIOR OF AUSTENITIC STEELS IN SUPERCRITICAL CO2 POWER GENERATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 400-406 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0954

References

[1] GARG P, KUMAR P, SRINIVASAN K.Supercritical carbon dioxide Brayton cycle for concentrated solar power[J]. The journal of supercritical fluids, 2013, 76: 54-60.
[2] ONG T C, SARVGHAD M, LIPPIATT K, et al.Review of the solubility, monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants[J]. Renewable and sustainable energy reviews, 2020, 131: 110006.
[3] 王刚, 董博祎, 姜铁骝, 等. S-CO2布雷顿循环太阳能电力淡水系统(火用)分析[J]. 太阳能学报, 2022, 43(7): 197-202.
WANG G, DONG B Y, JIANG T L, et al.Exergy analysis of S-CO2 brayton cycle solar system for electricity and fresh water productions[J]. Acta energiae solaris sinica, 2022, 43(7): 197-202.
[4] CHACARTEGUI R, MUÑOZ DE ESCALONA J M, SÁNCHEZ D, et al. Alternative cycles based on carbon dioxide for central receiver solar power plants[J]. Applied thermal engineering, 2011, 31(5): 872-879.
[5] AHN Y, BAE S J, KIM M, et al.Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear engineering and technology, 2015, 47(6): 647-661.
[6] LIU X X, XU Z, XIE Y C, et al.CO2-based mixture working fluids used for the dry-cooling supercritical Brayton cycle: thermodynamic evaluation[J]. Applied thermal engineering, 2019, 162: 114226.
[7] 杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报, 2022, 43(9): 125-130.
YANG J Z, YANG Z, DUAN Y Y.Thermodynamic and economic analysis of solar power tower system based on S-CO2 cycle with different installed capacity[J]. Acta energiae solaris sinica, 2022, 43(9): 125-130.
[8] DELKASAR MAHER S, SARVGHAD M, OLIVARES R, et al.Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: degradation mechanisms and failure consequences[J]. Solar energy materials and solar cells, 2022, 242: 111768.
[9] FIROUZDOR V, SRIDHARAN K, CAO G, et al.Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment[J]. Corrosion science, 2013, 69: 281-291.
[10] 刘珠, 郭相龙, 王鹏, 等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程, 2020, 41(增刊1): 183-187.
LIU Z, GUO X L, WANG P, et al.Corrosion behavior of 310S stainless steel in supercritical carbon dioxide[J]. Nuclear power engineering, 2020, 41(S1): 183-187.
[11] CHEN H S, KIM S H, KIM C, et al.Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 ℃[J]. Corrosion science, 2019, 156: 16-31.
[12] 马丽娜, 吴玉庭, 张灿灿, 等. 奥氏体不锈钢在四元硝酸盐中的动态腐蚀行为研究[J]. 太阳能学报, 2023, 44(3): 497-503.
MA L N, WU Y T, ZHANG C C, et al.Dynamic corrosion behaviors of autennitic stainless steel in quaternary nitrate-niotrite molten salt[J]. Acta energiae solaris sinica, 2023, 44(3): 497-503.
[13] 桂雍, 梁志远, 郭亭山, 等. 超临界二氧化碳环境中耐热材料的腐蚀行为研究[J]. 动力工程学报, 2021, 41(7): 602-608, 616.
GUI Y, LIANG Z Y, GUO T S, et al.Corrosion behavior of heat-resistant materials in supercritical carbon dioxide environment[J]. Journal of Chinese Society of Power Engineering, 2021, 41(7): 602-608, 616.
[14] KIM S H, CHA J H, JANG C.Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650 ℃[J]. Corrosion science, 2020, 174: 108843.
[15] MAHAFFEY J, ADAM D, BRITTAN A, et al.Corrosion of alloy Haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions[J]. Oxidation of metals, 2016, 86(5): 567-580.
[16] 刘蔚伟, 杨鸿, 姜峨, 等. 超临界二氧化碳核能动力转换系统关键材料腐蚀行为研究[J]. 原子能科学技术, 2021, 55(S2): 242-248.
LIU W W, YANG H, JIANG E, et al.Corrosion behavior research of critical material for supercritical carbon dioxide nuclear power conversion system[J]. Atomic energy science and technology, 2021, 55(S2): 242-248.
[17] OLEKSAK R P, HOLCOMB G R, CARNEY C S, et al.Carburization susceptibility of chromia-forming alloys in high-temperature CO2[J]. Corrosion science, 2022, 206: 110488.
[18] TAN L, ANDERSON M, TAYLOR D, et al.Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide[J]. Corrosion science, 2011, 53(10): 3273-3280.
[19] ZHU Z L, CHENG Y, XIAO B, et al.Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide[J]. Energy, 2019, 175: 1075-1084.
[20] OLEKSAK R P, ROUILLARD F.Materials performance in CO2 and supercritical CO2[M]//Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2020: 422-451.
[21] YANG H, LIU W W, GONG B, et al.Corrosion behavior of typical structural steels in 500 ℃, 600 ℃ and high pressure supercritical carbon dioxide conditions[J]. Corrosion science, 2021, 192: 109801.
[22] ZHANG G, JIANG E, LIU W W, et al.Compatibility of different commercial alloys in high-temperature, supercritical carbon dioxide[J]. Materials, 2022, 15(13): 4456.
[23] GHENO T, MONCEAU D, YOUNG D J.Kinetics of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide[J]. Corrosion science, 2013, 77: 246-256.
[24] BRITTAN A, MAHAFFEY J, ADAM D, et al.Mechanical and corrosion response of 316SS in supercritical CO2[J]. Oxidation of metals, 2021, 95(5): 409-425.
PDF(2030 KB)

Accesses

Citation

Detail

Sections
Recommended

/