ULTRA-SHORT-TERM PV POWER DYNAMIC PREDICTION METHOD BASED ON SFLA AND MSISSA-ANFIS

Li Lianbing, Gao Guoqiang, Tao Peng, Zhang Chao, Zhao Shasha, Chen Weiguang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 326-335.

PDF(1193 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1193 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 326-335. DOI: 10.19912/j.0254-0096.tynxb.2023-0957

ULTRA-SHORT-TERM PV POWER DYNAMIC PREDICTION METHOD BASED ON SFLA AND MSISSA-ANFIS

  • Li Lianbing1, Gao Guoqiang2, Tao Peng3, Zhang Chao3, Zhao Shasha3, Chen Weiguang2
Author information +
History +

Abstract

PV power output is characterized by volatility and randomness, and accurate power prediction has important application value for safe grid operation in the process of achieving grid connection. In this paper, an intra-day dynamic prediction model of ultra-short-term PV power based on SFLA, MSISSA and ANFIS is proposed. Firstly, MSISSA is used to optimize the ANFIS model for its drawback of being influenced by the membership function, and the power prediction model based on SFLA and MSISSA-ANFIS is constructed by combining the SFLA method of selecting similar days. Then a feature vector is constructed to predict the PV power for the next 4 h based on the set of power, meteorological features and similar days with high correlation. Finally, the real-time updated future meteorological data obtained from small weather stations are stored in the database and predicted every 15 min to realize the intra-day dynamic prediction of PV power. The results show that the proposed method improves the accuracy of ultra-short-term PV prediction。

Key words

photovoltaic power prediction / time series / adaptive neuro-fuzzy inference system / algorithm optimization / similar day selection

Cite this article

Download Citations
Li Lianbing, Gao Guoqiang, Tao Peng, Zhang Chao, Zhao Shasha, Chen Weiguang. ULTRA-SHORT-TERM PV POWER DYNAMIC PREDICTION METHOD BASED ON SFLA AND MSISSA-ANFIS[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 326-335 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0957

References

[1] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[2] YANG X D, XU C B, ZHANG Y B, et al.Real-time coordinated scheduling for ADNs with soft open points and charging stations[J]. IEEE transactions on power systems, 2021, 36(6): 5486-5499.
[3] 刘甚臻, 马超. 基于小波变换和混合深度学习的短期光伏功率预测[J]. 可再生能源, 2023, 41(6): 744-749.
LIU S Z, MA C.Short-term photovoltaic power prediction based on wavelet transform and hybrid deep learning[J]. Renewable energy resources, 2023, 41(6): 744-749.
[4] ZHOU Y, ZHOU N R, GONG L H, et al.Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894.
[5] YUAN T H, ZHU N, SHI Y F, et al.Sample data selection method for improving the prediction accuracy of the heating energy consumption[J]. Energy and buildings, 2018, 158: 234-243.
[6] 孟安波, 陈嘉铭, 黎湛联, 等. 基于相似日理论和CSO-WGPR的短期光伏发电功率预测[J]. 高电压技术, 2021, 47(4): 1176-1184.
MENG A B, CHEN J M, LI Z L, et al.Short-term photovoltaic power generation prediction based on similar day theory and CSO-WGPR[J]. High voltage engineering, 2021, 47(4): 1176-1184.
[7] 张翔颖, 杨永标, 徐青山, 等. 基于多时段相似日理论的光伏功率组合预测方法[J]. 南方电网技术, 2023, 17(2): 57-65.
ZHANG X Y, YANG Y B, XU Q S, et al.Photovoltaic power combination prediction method based on multi-temporal similarity day theory[J]. Southern power system technology, 2023, 17(2): 57-65.
[8] DOLARA A, LEVA S, MANZOLINI G.Comparison of different physical models for PV power output prediction[J]. Solar energy, 2015, 119: 83-99.
[9] 张家安, 郝峰, 董存, 等. 基于两阶段不确定性量化的光伏发电超短期功率预测[J]. 太阳能学报, 2023, 44(1): 69-77.
ZHANG J A, HAO F, DONG C, et al.Ultra-short-term power forecasting of photovoltaic power generation based on two-stage uncertainty quantization[J]. Acta energiae solaris sinica, 2023, 44(1): 69-77.
[10] LIU Y W, FENG H, LI H Y, et al.An improved whale algorithm for support vector machine prediction of photovoltaic power generation[J]. Symmetry, 2021, 13(2): 212.
[11] LIU Z F, LI L L, TSENG M L, et al.Prediction short-term photovoltaic power using improved chicken swarm optimizer-extreme learning machine model[J]. Journal of cleaner production, 2020, 248: 119272.
[12] MOREIRA M O, BALESTRASSI P P, PAIVA A P, et al.Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting[J]. Renewable and sustainable energy reviews, 2021, 135: 110450.
[13] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[14] 何志鹏. 基于改进CNN-LSTM的光伏发电功率预测及仿真研究[D]. 天津: 天津理工大学, 2022.
HE Z P.Research on power prediction and simulation of photovoltaic power generation based on improved CNN-LSTM[D]. Tianjin: Tianjin University of Technology, 2022.
[15] 栗然, 李广敏. 基于支持向量机回归的光伏发电出力预测[J]. 中国电力, 2008, 41(2): 74-78.
LI R, LI G M.Photovoltaic power generation output forecasting based on support vector machine regression technique[J]. Electric power, 2008, 41(2): 74-78.
[16] ROMERO A F, QUILUMBA F L, ARCOS H N.Short-term active power forecasting of a photovoltaic power plant using an artificial neural network[C]//2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). Salinas, USA, 2017: 1-5.
[17] JU Y, LI J, SUN G Y.Ultra-short-term photovoltaic power prediction based on self-attention mechanism and multi-task learning[J]. IEEE access, 2020, 8: 44821-44829.
[18] ZHOU H X, ZHANG Y J, YANG L F, et al.Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. IEEE access, 2019, 7: 78063-78074.
[19] ZHANG J L, LIU Z Y, CHEN T.Interval prediction of ultra-short-term photovoltaic power based on a hybrid model[J]. Electric power systems research, 2023, 216: 109035.
[20] 李正明, 梁彩霞, 王满商. 基于PSO-DBN神经网络的光伏短期发电出力预测[J]. 电力系统保护与控制, 2020, 48(8): 149-154.
LI Z M, LIANG C X, WANG M S.Short-term power generation output prediction based on a PSO-DBN neural network[J]. Power system protection and control, 2020, 48(8): 149-154.
[21] IBRAHIM I A, HOSSAIN M J, DUCK B C.An optimized offline random forests-based model for ultra-short-term prediction of PV characteristics[J]. IEEE transactions on industrial informatics, 2020, 16(1): 202-214.
[22] 杨茂, 冯帆. 基于马氏距离相似度量的光伏功率超短期预测方法的研究[J]. 可再生能源, 2021, 39(2): 175-181.
YANG M, FENG F.Ultra-short-term prediction of PV power based on similar days of Mahalanobis distance[J]. Renewable energy resources, 2021, 39(2): 175-181.
[23] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-term photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[24] RAHARJA M A, DARMAWAN I A, NILAKUSUMAWATI D E, et al.Analysis of membership function in implementation of adaptive neuro fuzzy inference system (ANFIS) method for inflation prediction[J]. Journal of physics: conference series, 2021, 1722(1): 012005.
PDF(1193 KB)

Accesses

Citation

Detail

Sections
Recommended

/