RESEARCH ON SOLAR HEATING LOAD FORECASTING BASED ON CNN AND BILSTM NEURAL NETWORK MODEL

Zhou Zekai, Hou Hongjuan, Sun Li, Jin Tao

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 415-422.

PDF(5673 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5673 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (10) : 415-422. DOI: 10.19912/j.0254-0096.tynxb.2023-0962

RESEARCH ON SOLAR HEATING LOAD FORECASTING BASED ON CNN AND BILSTM NEURAL NETWORK MODEL

  • Zhou Zekai, Hou Hongjuan, Sun Li, Jin Tao
Author information +
History +

Abstract

Aiming at the phenomenon of energy waste caused by the mismatch between heat supply and demand in solar heating system, a short-term heat load forecasting model based on convolutional neural network-bidirectional long short-term memory neural network is proposed. Firstly, the data is cleaned to make the data accurate and complete. Secondly, the input features are screened according to the Pearson correlation coefficient. Finally, a convolutional neural network-bidirectional long-term and short-term memory neural network model is established based on its spatial-temporal characteristics. After detailed comparison and analysis with the single neural network model, the length of the memory neural network and the two-way long short-term memory neural network, the results show that the model has a significant improvement in accuracy compared with the traditional neural network model, which verifies the effectiveness of the model in the prediction of solar heating load.

Key words

solar heating / convolutional neural network(CNN) / long short-term memory(LSTM) / thermal load / neural network model

Cite this article

Download Citations
Zhou Zekai, Hou Hongjuan, Sun Li, Jin Tao. RESEARCH ON SOLAR HEATING LOAD FORECASTING BASED ON CNN AND BILSTM NEURAL NETWORK MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 415-422 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0962

References

[1] 孙峰, 毕文剑, 周楷, 等. 太阳能热利用技术分析与前景展望[J]. 太阳能, 2021(7): 23-36.
SUN F, BI W J, ZHOU K, et al.Analysis and prospect of solar thermal utilization technology[J]. Solar energy, 2021(7): 23-36.
[2] 闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(增刊1): 47-56.
YAN Y F, ZHANG Z E, ZHANG L, et al.Application and utilization technology of solar energy[J]. Acta energiae solaris sinica, 2012, 33(S1): 47-56.
[3] 周浩杰. 集中供热系统换热站负荷预测与控制算法研究[D]. 天津: 天津理工大学, 2019.
ZHOU H J.Research on load forecasting and control algorithm of heat exchange station in central heating system[D]. Tianjin: Tianjin University of Technology, 2019.
[4] FANG T T, LAHDELMA R.Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system[J]. Applied energy, 2016, 179: 544-552.
[5] CATALINA T, IORDACHE V, CARACALEANU B.Multiple regression model for fast prediction of the heating energy demand[J]. Energy and buildings, 2013, 57: 302-312.
[6] 朱学莉, 齐维贵, 陆亚俊. 建筑供热负荷预报与预测控制策略研究[J]. 控制与决策, 2002, 17(增刊1): 703-706.
ZHU X L, QI W G, LU Y J.Heating load prediction and predictive control tactics of heat supply for building[J]. Control and decision, 2002, 17(S1): 703-706.
[7] KAWASHIMA M, DORGAN C E, MITCHELL J W.Hourly thermal load prediction for the next 24 hours by Arima, Ewma, LR, and an artificial neural network[J]. ASHRAE transactions, 1995(1): 186-200.
[8] 孙瑞. 基于负荷预测和瞬态模拟的集中供热系统控制策略优化[D]. 吉林: 东北电力大学, 2020.
SUN R.Control strategy optimization of central heating system based on load forcasting and transient simulation[D]. Jilin: Northeast Dianli University, 2020.
[9] WOJDYGA K.Predicting heat demand for a district heating systems[J]. International journal of energy and power engineering, 2014, 3(5): 237.
[10] 欧阳静, 杨吕, 尹康, 等. 基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测[J]. 太阳能学报, 2022, 43(9): 499-507.
OUYANG J, YANG L, YIN K, et al.Short-term load forecasting method for integrated energy system based on ALIF-LSTM and multi-task learning[J]. Acta energiae solaris sinica, 2022, 43(9): 499-507.
[11] 闫露, 雷东强, 李晓, 等. 基于混合神经网络的槽式太阳能集热场出口温度预测研究[J]. 太阳能学报, 2023, 44(5): 265-273.
YAN L, LEI D Q, LI X, et al.Outlet temperature prediction of parabolic trough solar field based on hybrid neural network[J]. Acta energiae solaris sinica, 2023, 44(5): 265-273.
[12] SONG J C, ZHANG L Y, XUE G X, et al.Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model[J]. Energy and buildings, 2021, 243: 110998.
[13] KIM T Y, CHO S B.Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81.
[14] RAFI S H, NAHID-AL-MASOOD, DEEBA S R, et al.A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE access, 2021, 9: 32436-32448.
[15] ZENG J W, QIAO W.Support vector machine-based short-term wind power forecasting[C]//2011 IEEE/PES Power Systems Conference and Exposition. Phoenix, AZ, USA, 2011: 1-8.
[16] XAVIER G, YOSHUA B.Proceedings of the thirteenth international conference on artificial intelligence and statistics[J]. Proceedings of machine learning research, 2010, 9: 249-256.
[17] JONES D R.A taxonomy of global optimization methods based on response surfaces[J]. Journal of global optimization, 2001, 21(4): 345-383.
[18] SNOEK J, LAROCHELLE H, ADAMS R P.Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe, Nevada, 2012: 2951-2959.
PDF(5673 KB)

Accesses

Citation

Detail

Sections
Recommended

/