DEVELOPMENT AND PROSPECT OF HYDROGEN STORAGE AND TRANSPORTATION TECHNOLOGY

Liao Hongbo, Zhang Xuexia, Yue Jialing, Qiu Danluo, Tang Shuangxi

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 691-699.

PDF(1769 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1769 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 691-699. DOI: 10.19912/j.0254-0096.tynxb.2023-1020

DEVELOPMENT AND PROSPECT OF HYDROGEN STORAGE AND TRANSPORTATION TECHNOLOGY

  • Liao Hongbo, Zhang Xuexia, Yue Jialing, Qiu Danluo, Tang Shuangxi
Author information +
History +

Abstract

Primarily, the current status of development for the hydrogen storage and transportation technology are reviewed in this paper, including the storage and transportation manners of gaseous, liquid, solid, and hybrid, respectively. Subsequently, based on the index requirements of on-board hydrogen storage by US Department of Energy, the comprehensive performance of varied hydrogen storage technologies is compared, and the advantages and disadvantages of the existing hydrogen transportation ways are summarized. Finally, five suggestions are put forward for the future research direction of hydrogen storage and transportation technology. Overall, new hydrogen storage cylinders with superior comprehensive performance and hybrid hydrogen storage technologies should be the main focus of current research in the field of hydrogen storage. Liquid hydrogen transportation and natural gas mixed with hydrogen transportation are significant research hotspots for the future and present, respectively.

Key words

hydrogen / hydrogen storage / transportation / hybrid hydrogen storage / hydrogen-mixed natural gas / comprehensive performances

Cite this article

Download Citations
Liao Hongbo, Zhang Xuexia, Yue Jialing, Qiu Danluo, Tang Shuangxi. DEVELOPMENT AND PROSPECT OF HYDROGEN STORAGE AND TRANSPORTATION TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 691-699 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1020

References

[1] FAYE O, SZPUNAR J A.An efficient way to suppress the competition between adsorption of H2 and desorption of nH2-Nb complex from graphene sheet: a promising approach to H2 storage[J]. The journal of physical chemistry C, 2018, 122(50): 28506-28517.
[2] 李军, 薄柯, 黄强华, 等. 高压氢气储运移动式压力容器发展趋势与挑战[J]. 太阳能学报, 2022, 43(3): 20-26.
LI J, BO K, HUANG Q H, et al.Development trend and challenges of high pressure hydrogen transpotable pressure vessel[J]. Acta energiae solaris sinica, 2022, 43(3): 20-26.
[3] ZHENG J Y, LIU X X, XU P, et al.Development of high pressure gaseous hydrogen storage technologies[J]. International journal of hydrogen energy, 2012, 37(1): 1048-1057.
[4] SAZELEE N A, ISMAIL M.Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: a review[J]. International journal of hydrogen energy, 2021, 46(13): 9123-9141.
[5] YATSENKO E A, GOLTSMAN B M, NOVIKOV Y V, et al.Review on modern ways of insulation of reservoirs for liquid hydrogen storage[J]. International journal of hydrogen energy, 2022, 47(97): 41046-41054.
[6] TAKEICHI N, SENOH H, YOKOTA T, et al.“Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material[J]. International journal of hydrogen energy, 2003, 28(10): 1121-1129.
[7] HE M, LV C, GONG L H, et al.The design and optimization of a cryogenic compressed hydrogen refueling process[J]. International journal of hydrogen energy, 2021, 46(57): 29391-29399.
[8] WANNIARACHCHI S, HEWAGE K, WIRASINGHE C, et al.Transforming road freight transportation from fossils to hydrogen: opportunities and challenges[J]. International journal of sustainable transportation, 2023, 17(5): 552-572.
[9] LAHNAOUI A, WULF C, HEINRICHS H, et al.Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks[J]. International journal of hydrogen energy, 2019, 44(35): 19302-19312.
[10] YALCIN E, SUNER M.The changing role of diesel oil-gasoil-LPG and hydrogen based fuels in human health risk: a numerical investigation in ferry ship operations[J]. International journal of hydrogen energy, 2020, 45(5): 3660-3669.
[11] ZHOU N, LI X W, LI X, et al.Effect of hydrogen addition on the explosion characteristics of methane-hydrogen-air mixture in T-shaped bifurcation pipe[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2022, 44(2): 3808-3822.
[12] ZHOU C S, YE B G, SONG Y Y, et al.Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel[J]. International journal of hydrogen energy, 2019, 44(40): 22547-22558.
[13] FAYE O, SZPUNAR J, EDUOK U.A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. International journal of hydrogen energy, 2022, 47(29): 13771-13802.
[14] SUN B G, ZHANG D S, LIU F S.Analysis of the cost-effectiveness of pressure for vehicular high-pressure gaseous hydrogen storage vessel[J]. International journal of hydrogen energy, 2012, 37(17): 13088-13091.
[15] 李建, 张立新, 李瑞懿, 等. 高压储氢容器研究进展[J]. 储能科学与技术, 2021, 10(5): 1835-1844.
LI J, ZHANG L X, LI R Y, et al.High-pressure gaseous hydrogen storage vessels: current status and prospects[J]. Energy storage science and technology, 2021, 10(5): 1835-1844.
[16] 张志芸, 张国强, 刘艳秋, 等. 车载储氢技术研究现状及发展方向[J]. 油气储运, 2018, 37(11): 1207-1212.
ZHANG Z Y, ZHANG G Q, LIU Y Q, et al.Research status and development direction of on-board hydrogen storage technologies[J]. Oil & gas storage and transportation, 2018, 37(11): 1207-1212.
[17] 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594.
LI L L, FAN S S, CHEN Q X, et al.Hydrogen storage technology: Current status and prospects[J]. Energy storage science and technology, 2018, 7(4): 586-594.
[18] DAS L M.On-board hydrogen storage systems for automotive application[J]. International journal of hydrogen energy, 1996, 21(9): 789-800.
[19] 邱龙会, 魏芸, 傅依备. 薄壁玻璃微球壳的热扩散充气[J]. 强激光与粒子束, 1999, 11(3): 317-320.
QIU L H, WEI Y, FU Y B.Gas diffusion fill through hollow glass microspheres with high aspect ratio[J]. High power laser and particle beams, 1999, 11(3): 317-320.
[20] 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191.
PU L, YU H S, DAI M H, et al.Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese science bulletin, 2022, 67(19): 2172-2191.
[21] 常乐, 倪维斗, 李政, 等. 氢能供应链中最佳运氢方式的选择[J]. 清华大学学报(自然科学版), 2009, 49(2): 257-260.
CHANG L, NI W D, LI Z, et al.Selection of best hydrogen transport mode in the hydrogen supply chain[J]. Journal of Tsinghua University (science and technology), 2009, 49(2): 257-260.
[22] LI M, MING P W, HUO R, et al.Economic assessment and comparative analysis of hydrogen transportation with various technical processes[J]. Journal of renewable and sustainable energy, 2023, 15(2): 025904.
[23] 黄明, 吴勇, 文习之, 等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力, 2013, 33(4): 39-42.
HUANG M, WU Y, WEN X Z, et al.Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas & heat, 2013, 33(4): 39-42.
[24] MORENO-BLANCO J, CAMACHO G, VALLADARES F, et al.The cold high-pressure approach to hydrogen delivery[J]. International journal of hydrogen energy, 2020, 45(51): 27369-27380.
[25] 刘超广, 马贵阳, 孙东旭. 氢气管输技术研究进展[J]. 太阳能学报, 2023, 44(1): 451-458.
LIU C G, MA G Y, SUN D X.Research progress for technology of hydrogen transportation by pipeline[J]. Acta energiae solaris sinica, 2023, 44(1): 451-458.
[26] CHAE M J, KIM J H, MOON B, et al.The present condition and outlook for hydrogen-natural gas blending technology[J]. Korean journal of chemical engineering, 2022, 39(2): 251-262.
[27] NYKYFORCHYN H, ZVIRKO O, HREDIL M, et al.Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport[J]. Frattura ed integrità strutturale, 2021, 16(59): 396-404.
[28] ZHOU D J, LI T T, HUANG D W, et al.The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel[J]. International journal of hydrogen energy, 2021, 46(10): 7402-7414.
[29] NAYEBOSSADRI S, SPEIGHT J D, BOOK D.Hydrogen separation from blended natural gas and hydrogen by Pd-based membranes[J]. International journal of hydrogen energy, 2019, 44(55): 29092-29099.
[30] MACHHAMMER O, HENSCHEL C, FUESSL A.Natural gas pipelines for hydrogen transport[J]. Chemie-ingenieur-technik, 2021, 93(4): 717-728.
[31] 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478.
CAO J W, QIN X F, GENG G, et al.Current status and prospects of hydrogen storage and transportation technology[J]. Acta petrolei sinica (petroleum processing section), 2021, 37(6): 1461-1478.
[32] XU P, LEI G, XU Y Y, et al.Study on continuous cooling process coupled with ortho-Para hydrogen conversion in plate-fin heat exchanger filled with catalyst[J]. International journal of hydrogen energy, 2022, 47(7): 4690-4703.
[33] 扬帆, 张超, 张博超, 等. 大型液氢储罐内罐材料研究与应用进展[J]. 太阳能学报, 2023, 44(10): 557-563.
YANG F, ZHANG C, ZHANG B C, et al.Research and application progress of inner tank materials for large liquid hydrogen storage tanks[J]. Acta energiae solaris sinica, 2023, 44(10): 557-563.
[34] QIU Y N, YANG H, TONG L G, et al.Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101.
[35] HEDAYAT A.Analytical modeling of variable density multilayer insulation for cryogenic storage[C]//AIP Conference Proceedings. Madison, Wisconsin, USA, 2002.
[36] 李延娜, 陈叔平, 姚淑婷, 等. 应用于ZBO存储的SOFI/VD-MLI技术研究[J]. 低温与超导, 2013, 41(12): 15-18.
LI Y N, CHEN S P, YAO S T, et al.Study on SOFI/VD-MLI technology for ZBO storage[J]. Cryogenics & superconductivity, 2013, 41(12): 15-18.
[37] JIANG W B, ZUO Z Q, SUN P J, et al.Thermal analysis of coupled vapor-cooling-shield insulation for liquid hydrogen-oxygen pair storage[J]. International journal of hydrogen energy, 2022, 47(12): 8000-8014.
[38] LIU Y W, LIU X, YUAN X Z, et al.Optimizing design of a new zero boil off cryogenic storage tank in microgravity[J]. Applied energy, 2016, 162: 1678-1686.
[39] LUO J, CHEN Y Y, ZHANG L M, et al.Numerical investigation on regenerative heat-driven cryocoolers for zero boil-off storage of liquid hydrogen[C]//ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Rotterdam, Netherlands, 2022
[40] CLOT E, EISENSTEIN O, CRABTREE R H.Computational structure-activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials[J]. Chemical communications, 2007(22): 2231-2233.
[41] LUO W, CAMPBELL P G, ZAKHAROV L N, et al.A single-component liquid-phase hydrogen storage material[J]. Journal of the American Chemical Society, 2011, 133(48): 19326-19329.
[42] DAI Y, ZHANG X, LIU Y F, et al.1,6;2,3-Bis-BN cyclohexane: synthesis, structure, and hydrogen release[J]. Journal of the American Chemical Society, 2022, 144(19): 8434-8438.
[43] ALKHALEDI A N, SAMPATH S, PILIDIS P.Propulsion of a hydrogen-fuelled LH2 tanker ship[J]. International journal of hydrogen energy, 2022, 47(39): 17407-17422.
[44] 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371.
ZHANG X, FAN X Y, WU Z Y, et al.Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical industry and engineering progress, 2022, 41(5): 2364-2371.
[45] 马建新, 刘绍军, 周伟, 等. 加氢站氢气运输方案比选[J]. 同济大学学报(自然科学版), 2008, 36(5): 615-619.
MA J X, LIU S J, ZHOU W, et al.Comparison of hydrogen transportation methods for hydrogen refueling station[J]. Journal of Tongji University (natural science), 2008, 36(5): 615-619.
[46] WULF C, ZAPP P.Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers[J]. International journal of hydrogen energy, 2018, 43(26): 11884-11895.
[47] HURSKAINEN M, IHONEN J.Techno-economic feasibility of road transport of hydrogen using liquid organic hydrogen carriers[J]. International journal of hydrogen energy, 2020, 45(56): 32098-32112.
[48] JANG M, SHIN B S, JO Y S, et al.A study on hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether[J]. Journal of energy chemistry, 2020, 42: 11-16.
[49] MÜLLER K, SKELEDZIC T, WASSERSCHEID P. Strategies for low-temperature liquid organic hydrogen carrier dehydrogenation[J]. Energy & fuels, 2021, 35(13): 10929-10936.
[50] 曲海芹, 娄豫皖, 杜俊霖, 等. 碳质储氢材料的研究进展[J]. 材料导报, 2014, 28(13): 69-71, 77.
QU H Q, LOU Y W, DU J L, et al.Research progress of carbon-based hydrogen storage materials[J]. Materials review, 2014, 28(13): 69-71, 77.
[51] 张峰, 冯翠红, 张丽鹏, 等. 物理吸附储氢材料的研究进展[J]. 硅酸盐通报, 2013, 32(9): 1785-1789, 1793.
ZHANG F, FENG C H, ZHANG L P, et al.Study progress on the hydrogen storage material by physical absorption[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1785-1789, 1793.
[52] ISIDRO-ORTEGA F J, PACHECO-SÁNCHEZ J H, DESALES-GUZMÁN L A. Hydrogen storage on lithium decorated zeolite templated carbon, DFT study[J]. International journal of hydrogen energy, 2017, 42(52): 30704-30717.
[53] 张利智, 刘聪, 禹国军. 基于物理吸附的微孔储氢材料研究进展[J]. 应用化工, 2021, 50(12): 3407-3410.
ZHANG L Z, LIU C, YU G J.Research progress in microporous physical-adsorption-based hydrogen storage materials[J]. Applied chemical industry, 2021, 50(12): 3407-3410.
[54] CHAKRABORTY B, RAY P, GARG N, et al.High capacity reversible hydrogen storage in titanium doped 2D carbon allotrope Ψ-graphene: density functional theory investigations[J]. International journal of hydrogen energy, 2021, 46(5): 4154-4167.
[55] 马通祥, 高雷章, 胡蒙均, 等. 固体储氢材料研究进展[J]. 功能材料, 2018, 49(4): 4001-4006.
MA T X, GAO L Z, HU M J, et al.Research progress of solid hydrogen storage materials[J]. Journal of functional materials, 2018, 49(4): 4001-4006.
[56] LOTOTSKYY M V, YARTYS V A, POLLET B G, et al.Metal hydride hydrogen compressors: a review[J]. International journal of hydrogen energy, 2014, 39(11): 5818-5851.
[57] 张晓飞, 蒋利军, 叶建华, 等. 固态储氢技术的研究进展[J]. 太阳能学报, 2022, 43(6): 345-354.
ZHANG X F, JIANG L J, YE J H, et al.Research progress of solid-state hydrogen storage teachnology[J]. Acta energiae solaris sinica, 2022, 43(6): 345-354.
[58] 张秋雨, 杜四川, 马哲文, 等. 镁基储氢材料的研究进展[J]. 科学通报, 2022, 67(19): 2158-2171.
ZHANG Q Y, DU S C, MA Z W, et al.Recent advances in Mg-based hydrogen storage materials[J]. Chinese science bulletin, 2022, 67(19): 2158-2171.
[59] WAGEMANS R W P, VAN LENTHE J H, DE JONGH P E, et al. Hydrogen storage in magnesium clusters: quantum chemical study[J]. Journal of the American Chemical Society, 2005, 127(47): 16675-16680.
[60] ZHANG X, LIU Y F, REN Z H, et al.Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides[J]. Energy & environmental science, 2021, 14(4): 2302-2313.
[61] WENG Z Y, RETITA I, TSENG Y S, et al.γ-MgH2 induced by high pressure for low temperature dehydrogenation[J]. International journal of hydrogen energy, 2021, 46(7): 5441-5448.
[62] 牛森. 钛基储氢合金的制备及电化学性能研究[D]. 长沙: 中南大学, 2013.
NIU S.Fabrication and electrochemical properties of Ti-based hydrogen storagre alloys[D]. Changsha: Central South University, 2013.
[63] Department of energy. DOE technical targets for onboard hydrogen storage for light-duty vehicles [EB/OL].https://www.energy.gov/eere/fuelcells/doe-technical-targetsonboard-hydrogen-storage-light-duty-vehicles.
[64] BOGDANOVIĆ B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials[J]. Journal of alloys and compounds, 1997, 253/254: 1-9.
[65] EBERLE U, ARNOLD G, VON HELMOLT R.Hydrogen storage in metal-hydrogen systems and their derivatives[J]. Journal of power sources, 2006, 154(2): 456-460.
[66] VELUSWAMY H P, KUMAR R, LINGA P.Hydrogen storage in clathrate hydrates: current state of the art and future directions[J]. Applied energy, 2014, 122: 112-132.
[67] SAHA D, DENG S G.Accelerated formation of THF-H2 clathrate hydrate in porous media[J]. Langmuir, 2010, 26(11): 8414-8418.
[68] 李昊阳, 张炜, 李小森, 等. 水合物储氢的研究进展[J]. 化工进展, 2022, 41(12): 6285-6294.
LI H Y, ZHANG W, LI X S, et al.Research process of hydrate-based hydrogen storage[J]. Chemical industry and engineering progress, 2022, 41(12): 6285-6294.
[69] LIU J X, HOU J, XU J F, et al.Ab initio study of the molecular hydrogen occupancy in pure H2 and binary H2-THF clathrate hydrates[J]. International journal of hydrogen energy, 2017, 42(27): 17136-17143.
[70] 王亚雄, 钟顺彬, 孙逢春. 车载高质量密度固态储氢材料研究进展[J]. 稀有金属, 2022, 46(6): 796-812.
WANG Y X, ZHONG S B, SUN F C.Research progress in vehicular high mass density solid hydrogen storage materials[J]. Chinese journal of rare metals, 2022, 46(6): 796-812.
[71] CAO Y C, YANG Y W, ZHAO X L, et al.A review of seasonal hydrogen storage multi-energy systems based on temporal and spatial characteristics[J]. Journal of renewable materials, 2021, 9(11): 1823-1842.
[72] LUXENBURGER B, MÜLLER W. Investigations of the discharging of metal hydride beds for hydrogen-gasoline mixture operation of SI-engines[J]. International journal of hydrogen energy, 1985, 10(5): 305-315.
[73] 周超, 王辉, 欧阳柳章, 等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
ZHOU C, WANG H, OUYANG L Z, et al.The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials reports, 2019, 33(1): 117-126.
[74] CAO Z J, OUYANG L Z, WANG H, et al.Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank[J]. International journal of hydrogen energy, 2015, 40(6): 2717-2728.
[75] TU B, WANG H, WANG Y, et al.Optimizing Ti-Zr-Cr-Mn-Ni-V alloys for hybrid hydrogen storage tank of fuel cell bicycle[J]. International journal of hydrogen energy, 2022, 47(33): 14952-14960.
[76] ACEVES S M, ESPINOSA-LOZA F, LEDESMA-OROZCO E, et al.High-density automotive hydrogen storage with cryogenic capable pressure vessels[J]. International journal of hydrogen energy, 2010, 35(3): 1219-1226.
[77] 赵永志, 花争立, 欧可升, 等. 车载低温高压复合储氢技术研究现状与挑战[J]. 太阳能学报, 2013, 34(7): 1300-1306.
ZHAO Y Z, HUA Z L, OU K S, et al.Development and challenges of cryo-compressed hydrogen storage technologies for automotive applications[J]. Acta energiae solaris sinica, 2013, 34(7): 1300-1306.
[78] 吕翠, 贺明, 王金阵, 等. 车载低温高压氢存储技术现状及分析[J]. 低温与超导, 2023, 51(2): 1-6.
LV C, HE M, WANG J Z, et al.Status and analysis of on-board cryogenic and compressed hydrogen storage technology[J]. Cryogenics & superconductivity, 2023, 51(2): 1-6.
[79] 赵延兴, 公茂琼, 周远. 气相低温高压储氢密度和能耗的理论分析及比较[J]. 科学通报, 2019, 64(25): 2654-2660.
ZHAO Y X, GONG M Q, ZHOU Y.The storage of hydrogen based on low-temperature and high-pressure method[J]. Chinese science bulletin, 2019, 64(25): 2654-2660.
[80] RIVARD E, TRUDEAU M, ZAGHIB K.Hydrogen storage for mobility: a review[J]. Materials, 2019, 12(12): 1973.
[81] SHIN H K, HA S K.A review on the cost analysis of hydrogen gas storage tanks for fuel cell vehicles[J]. Energies, 2023, 16(13): 5233.
[82] KOJIMA Y.Hydrogen storage materials for hydrogen and energy carriers[J]. International journal of hydrogen energy, 2019, 44(33): 18179-18192.
[83] ABD KHALIM KHAFIDZ N Z, YAAKOB Z, LIM K L, et al. The kinetics of lightweight solid-state hydrogen storage materials: a review[J]. International journal of hydrogen energy, 2016, 41(30): 13131-13151.
[84] REDDI K, ELGOWAINY A, RUSTAGI N, et al.Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling[J]. International journal of hydrogen energy, 2018, 43(9): 4428-4438.
[85] BALAT M.Potential importance of hydrogen as a future solution to environmental and transportation problems[J]. International journal of hydrogen energy, 2008, 33(15): 4013-4029.
[86] JOHNSTON C, ALI KHAN M H, AMAL R, et al. Shipping the sunshine: an open-source model for costing renewable hydrogen transport from Australia[J]. International journal of hydrogen energy, 2022, 47(47): 20362-20377.
[87] SOUTHALL E, LUKASHUK L.Hydrogen storage and transportation technologies to enable the hydrogen economy: liquid organic hydrogen carriers[J]. Johnson matthey technology review, 2022, 66(3): 246-258.
PDF(1769 KB)

Accesses

Citation

Detail

Sections
Recommended

/