MELTING CHARACTERISTICS ANALYSIS OF TRIPLY PERIODIC MINIMAL SURFACE COMPOSITE PHASE CHANGE MATERIALS WITH DIFFERENT MODEL INCLINATION ANGLES

Liu Liangliang, Zhang Xiaokai, Sun Mingrui, Zhao Jiafei, Wu Di, Zhang Jun

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 612-618.

PDF(2725 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2725 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 612-618. DOI: 10.19912/j.0254-0096.tynxb.2023-1033

MELTING CHARACTERISTICS ANALYSIS OF TRIPLY PERIODIC MINIMAL SURFACE COMPOSITE PHASE CHANGE MATERIALS WITH DIFFERENT MODEL INCLINATION ANGLES

  • Liu Liangliang1, Zhang Xiaokai2, Sun Mingrui2, Zhao Jiafei2, Wu Di2, Zhang Jun2
Author information +
History +

Abstract

The composite phase change heat storage unit (TPMS-PCM) based on sheet Diamond and rod-Diamond structure was studied, and four models were established for different installation angles (0˚, 30˚, 60˚, 90˚). The influence of model inclination Angle on the energy storage performance of phase-change energy storage unit is studied by numerical simulation. The results show that the natural convection of the phase change energy storage unit based on the chip Diamond is weak, so it is less affected by the installation Angle. In the rod-shaped Diamond, the melting speed of the 60° model is 5.9% higher than that of the 0° model.

Key words

heat storage / numerical methods / phase change materials / model inclination / triply periodic minimal surfaces

Cite this article

Download Citations
Liu Liangliang, Zhang Xiaokai, Sun Mingrui, Zhao Jiafei, Wu Di, Zhang Jun. MELTING CHARACTERISTICS ANALYSIS OF TRIPLY PERIODIC MINIMAL SURFACE COMPOSITE PHASE CHANGE MATERIALS WITH DIFFERENT MODEL INCLINATION ANGLES[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 612-618 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1033

References

[1] 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63.
TENG J L, LI H Z.Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality[J]. Integrated intelligent energy, 2023, 45(8): 53-63.
[2] 张建平, 胡慧瑶, 吴淑英, 等. 正交各向异性相变材料的无网格法传热模型及应用[J]. 太阳能学报, 2022, 43(3): 242-250.
ZHANG J P, HU H Y, WU S Y, et al.Meshless heat transfer analysis model of orthotropic phase change materials and its application[J]. Acta energiae solaris sinica, 2022, 43(3): 242-250.
[3] DOBRI A, TSIANTIS A, PAPATHANASIOU T D, et al.Investigation of transient heat transfer in multi-scale PCM composites using a semi-analytical model[J]. International journal of heat and mass transfer, 2021, 175: 121389.
[4] LAOUER A, ARıCı M, TEGGAR M, et al. Effect of magnetic field and nanoparticle concentration on melting of Cu-ice in a rectangular cavity under fluctuating temperatures[J]. Journal of energy storage, 2021, 36: 102421.
[5] CHENG P, CHEN X, GAO H Y, et al.Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications[J]. Nano energy, 2021, 85: 105948.
[6] LI C, LI Q, GE R H.Enhancement of melting performance in a shell and tube thermal energy storage device under different structures and materials[J]. Applied thermal engineering, 2022, 214: 118701.
[7] 于静梅, 刘耀鸿, 张凤忠, 等. 翅片强化相变储能蓄热性能的数值研究[J]. 太阳能学报, 2023, 44(6): 78-83.
YU J M, LIU Y H, ZHANG F Z, et al.Numerical study of heat storage performance in phase change energy storage enhanced by fins[J]. Acta energiae solaris sinica, 2023, 44(6): 78-83.
[8] 韩涛, 马彦花, 方嘉宾, 等. 管壳式太阳能相变储热器传热特性的数值研究[J]. 太阳能学报, 2023, 44(3): 525-532.
HAN T, MA Y H, FANG J B, et al.Numerical simulation study of heat transfer characteristics on solar tube-and-shell phase change heat storage unit[J]. Acta energiae solaris sinica, 2023, 44(3): 525-532.
[9] LI W Q, QU Z G, HE Y L, et al.Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied thermal engineering, 2012, 37: 1-9.
[10] CHEN Z Q, GAO D Y, SHI J.Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International journal of heat and mass transfer, 2014, 72: 646-655.
[11] XIAO X, JIA H W, PERVAIZ S, et al.Molten salt/metal foam/graphene nanoparticle phase change composites for thermal energy storage[J]. ACS applied nano materials, 2020, 3(6): 5240-5251.
[12] EANEST JEBASINGH B, VALAN ARASU A.A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications[J]. Energy storage materials, 2020, 24: 52-74.
[13] EBRAHIMI A, HOSSEINI M J, RANJBAR A A, et al.Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe[J]. Renewable energy, 2019, 138: 378-394.
[14] CHOPRA K, PATHAK A K, TYAGI V V, et al.Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: an experimental assessment[J]. Energy conversion and management, 2020, 203: 112205.
[15] 赵兰, 王国珍. 相变蓄热复合传热强化技术综述[J]. 储能科学与技术, 2022, 11(11): 3534-3547.
ZHAO L, WANG G Z.Research progress on composite heat transfer enhancement technology of phase change heat storage system[J]. Energy storage science and technology, 2022, 11(11): 3534-3547.
[16] HAN L, CHE S N.An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems[J]. Advanced materials, 2018, 30(17): e1705708.
[17] FENG J W, FU J Z, YAO X H, et al.Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International journal of extreme manufacturing, 2022, 4(2): 022001.
[18] LIU X L, WANG H L, XU Q, et al.High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites[J]. International journal of heat and mass transfer, 2021, 175: 121405.
[19] SHEN H, JI A H, LI Q, et al.Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace[J]. Journal of comparative physiology A, neuroethology, sensory, neural, and behavioral physiology, 2023, 209(2): 239-251.
[20] AL-KETAN O, ROWSHAN R, ABU AL-RUB R K. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive manufacturing, 2018, 19: 167-183.
[21] BABY R, BALAJI C.Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink[J]. International communications in heat and mass transfer, 2013, 46: 27-30.
[22] LI H Y, HU C Z, HE Y C, et al.Influence of model inclination on the melting behavior of graded metal foam composite phase change material: a pore-scale study[J]. Journal of energy storage, 2021, 44: 103537.
[23] LI H Y, HU C Z, HE Y C, et al.Pore-scale study on Rayleigh-Bénard convection formed in the melting process of metal foam composite phase change material[J]. International journal of thermal sciences, 2022, 177: 107572.
PDF(2725 KB)

Accesses

Citation

Detail

Sections
Recommended

/