REGULATORY CHARACTERISTICS STUDY ON INTEGRATED SYSTEM OF PHOTOVOLTAIC AND PROTON EXCHANGE MEMBRANE WATER ELECTROLYSIS HYDROGEN PRODUCTION

Wang Ziheng, Chen Zhidong, Fan Zhengxing, Kong Yanqiang, Yang Lijun, Du Xiaoze

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 25-33.

PDF(1938 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1938 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 25-33. DOI: 10.19912/j.0254-0096.tynxb.2023-1044

REGULATORY CHARACTERISTICS STUDY ON INTEGRATED SYSTEM OF PHOTOVOLTAIC AND PROTON EXCHANGE MEMBRANE WATER ELECTROLYSIS HYDROGEN PRODUCTION

  • Wang Ziheng1,2, Chen Zhidong1,2, Fan Zhengxing1,2, Kong Yanqiang1,2, Yang Lijun1,2, Du Xiaoze1,2
Author information +
History +

Abstract

In this paper, a mathematical model of hydrogen production system of photovoltaic directly integrated with proton exchange membrane electrolysis cell stack is developed, its process and parameter are improved and an operation strategy is proposed. When the solar irradiance changes, its hydrogen production can be improved by adjusting the combination of photovoltaic module and the operation parameters of proton exchange membrane electrolysis cell stack (inlet water temperature and inlet water flow rate). The thermodynamic analysis of the system shows that the energy efficiency of the system is up to 11.52% and decreases with the increase of inlet water temperature.The inlet water flow rate has little influence on the energy efficiency of the system. The exergy efficiency of the system reaches up to 9.15%, which increases with the increase of inlet water temperature and decreases with the increase of inlet water flow rate.

Key words

solar cells / proton exchange membrane / hydrogen production / operation strategy / thermodynamic analysis / energy efficiency / exergy efficiency

Cite this article

Download Citations
Wang Ziheng, Chen Zhidong, Fan Zhengxing, Kong Yanqiang, Yang Lijun, Du Xiaoze. REGULATORY CHARACTERISTICS STUDY ON INTEGRATED SYSTEM OF PHOTOVOLTAIC AND PROTON EXCHANGE MEMBRANE WATER ELECTROLYSIS HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 25-33 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1044

References

[1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
HU A G.China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15.
[2] 王振, 苏烨, 张江丰, 等. 基于氢储能的光伏发电系统[J]. 电源技术, 2021, 45(10): 1333-1336.
WANG Z, SU Y, ZHANG J F, et al.PV generation system based on hydrogen storage[J]. Chinese journal of power sources, 2021, 45(10): 1333-1336.
[3] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[4] 胡兵, 徐立军, 何山, 等. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604.
HU B, XU L J, HE S, et al.Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality[J]. Chemical industry and engineering progress, 2022, 41(9): 4595-4604.
[5] 郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(20): 185-199.
GUO X Q, WEI Y P, WAN Y M, et al.Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Automation of electric power systems, 2021, 45(20): 185-199.
[6] KHELFAOUI N, DJAFOUR A, GHENAI C, et al.Experimental investigation of solar hydrogen production PV/PEM electrolyser performance in the Algerian Sahara regions[J]. International journal of hydrogen energy, 2021, 46(59): 30524-30538.
[7] KEMPPAINEN E, ASCHBRENNER S, BAO F X, et al.Effect of the ambient conditions on the operation of a large-area integrated photovoltaic-electrolyser[J]. Sustainable energy & fuels, 2020, 4(9): 4831-4847.
[8] SELLAMI M H, LOUDIYI K.Electrolytes behavior during hydrogen production by solar energy[J]. Renewable and sustainable energy reviews, 2017, 70: 1331-1335.
[9] ANCONA M A, BIANCHI M, BRANCHINI L, et al.From solar to hydrogen: preliminary experimental investigation on a small scale facility[J]. International journal of hydrogen energy, 2017, 42(33): 20979-20993.
[10] MRAOUI A, BENYOUCEF B, HASSAINE L.Experiment and simulation of electrolytic hydrogen production: case study of photovoltaic-electrolyzer direct connection[J]. International journal of hydrogen energy, 2018, 43(6): 3441-3450.
[11] NGUYEN DUC T, GOSHOME K, ENDO N, et al.Optimization strategy for high efficiency 20 kW-class direct coupled photovoltaic-electrolyzer system based on experiment data[J]. International journal of hydrogen energy, 2019, 44(49): 26741-26752.
[12] 苏昕, 徐立军, 胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报, 2022, 43(6): 521-529.
SU X, XU L J, HU B.Modelling and analysis of photovoltaic pem hydrogen production system considering multivariable factors[J]. Acta energiae solaris sinica, 2022, 43(6): 521-529.
[13] 阮景昕, 王跃社, 张俊峰, 等. 基于氢储能的风光氢能源系统能质转换优化策略[J]. 工程热物理学报, 2023, 44(2): 413-421.
RUAN J X, WANG Y S, ZHANG J F, et al.Energy-mass conersion optimization strategy of wind-solar-hydrogen energy system based on hydrogen energy storage[J]. Journal of engineering thermophysics, 2023, 44(2): 413-421.
[14] IBRAHIM H, ANANI N.Variations of PV module parameters with irradiance and temperature[J]. Energy procedia, 2017, 134: 276-285.
[15] 郭常青, 伊立其, 闫常峰, 等. 太阳能光伏-PEM水电解制氢直接耦合系统优化[J]. 新能源进展, 2019, 7(3): 287-294.
GUO C Q, YI L Q, YAN C F, et al.Optimization of photovoltaic-PEM electrolyzer direct coupling systems[J]. Advances in new and renewable energy, 2019, 7(3): 287-294.
[16] GRIGORIEV S A, KALINNIKOV A A, MILLET P, et al.Mathematical modeling of high-pressure PEM water electrolysis[J]. Journal of applied electrochemistry, 2010, 40(5): 921-932.
[17] GARCÍA-VALVERDE R, ESPINOSA N, URBINA A. Simple PEM water electrolyser model and experimental validation[J]. International journal of hydrogen energy, 2012, 37(2): 1927-1938.
[18] HOSEINI LARIMI S Z, RAMIAR A, ESMAILI Q, et al. The effect of inlet velocity of water on the two-phase flow regime in the porous transport layer of polymer electrolyte membrane electrolyzer[J]. Heat and mass transfer, 2019, 55(7): 1863-1870.
[19] AOUALI F Z, BECHERIF M, RAMADAN H S, et al.Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production[J]. International journal of hydrogen energy, 2017, 42(2): 1366-1374.
[20] 王志明. 质子交换膜电解池性能模拟及实验研究[D]. 北京: 华北电力大学, 2021.
WANG Z M.Numerical and experimental study on performance of proton exchange membrane electrolysis cell[D]. Beijing: North China Electric Power University, 2021.
[21] DEBE M K, HENDRICKS S M, VERNSTROM G D, et al.Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers[J]. Journal of the Electrochemical Society, 2012, 159(6): K165-K176.
[22] SIRACUSANO S, BAGLIO V, STASSI A, et al.Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers[J]. International journal of hydrogen energy, 2011, 36(13): 7822-7831.
[23] CRUZ J C, BAGLIO V, SIRACUSANO S, et al.Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer[J]. Journal of nanoparticle research, 2011, 13(4): 1639-1646.
PDF(1938 KB)

Accesses

Citation

Detail

Sections
Recommended

/