OFFSHORE WIND POWER FORECASTING BASED ON WIND SPEED-POWER COMBINATION DECOMPOSITON

Fu Zhixin, Wang Baochi, Liu Haoming, Wang Jian, Zhu Junpeng, Yuan Yue

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 418-426.

PDF(2557 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2557 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 418-426. DOI: 10.19912/j.0254-0096.tynxb.2023-1046

OFFSHORE WIND POWER FORECASTING BASED ON WIND SPEED-POWER COMBINATION DECOMPOSITON

  • Fu Zhixin, Wang Baochi, Liu Haoming, Wang Jian, Zhu Junpeng, Yuan Yue
Author information +
History +

Abstract

To enhance prediction accuracy, this study proposes a novel deep learning model that leverages data combination decomposition and Bayesian optimization. Initially, utilizing improved complete ensemble empirical mode decomposition with adaptive noise and variable modal decomposition optimized by the sparrow search algorithm, offshore wind speed data and historical power data are subjected to composite decomposition. Subsequently, the modal components obtained from composite decomposition are reconstructed using fuzzy entropy analysis to simplify the model. Finally, Bayesian-optimized long short-term memory neural networks are employed to forecast each power component, and the results of these components are aggregated to obtain the prediction of offshore wind power generation. Experimental data from offshore wind farms indicate that the proposed method efficiently mitigates the interference resulting from significant fluctuations in the original data, resulting in higher accuracy for both single-step and multi-step predictions compared to a conventional single-model approach utilizing offshore wind speed or power data decomposition.

Key words

offshore wind farms / forecasting / mode decomposition / long short-term memory / fuzzy entropy / Bayes optimization

Cite this article

Download Citations
Fu Zhixin, Wang Baochi, Liu Haoming, Wang Jian, Zhu Junpeng, Yuan Yue. OFFSHORE WIND POWER FORECASTING BASED ON WIND SPEED-POWER COMBINATION DECOMPOSITON[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 418-426 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1046

References

[1] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.
LIU J Z, MA L F, WANG Q H, et al.Offshore wind power supports China’s energy transition[J]. Strategic study of CAE, 2021, 23(1): 149-159.
[2] 赵靓. 2022—2031年全球海上风电市场展望[J]. 风能, 2022(7): 46-51.
ZHAO L. Prospect of global offshore wind power market in2022-2031[J]. Wind energy, 2022(7): 46-51.
[3] AMBACH D, SCHMID W.A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting[J]. Energy, 2017, 135: 833-850.
[4] 戚创创, 王向文. 考虑风向和大气稳定度的海上风电功率短期预测[J]. 电网技术, 2021, 45(7): 2773-2780.
QI C C, WANG X W.Short-term prediction of offshore wind power considering wind direction and atmospheric stability[J]. Power system technology, 2021, 45(7): 2773-2780.
[5] LYDIA M, SURESH KUMAR S, IMMANUEL SELVAKUMAR A, et al.Linear and non-linear autoregressive models for short-term wind speed forecasting[J]. Energy conversion and management, 2016, 112: 115-124.
[6] 钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压技术, 2016, 42(4): 1047-1060.
QIAN Z, PEI Y, CAO L X, et al.Review of wind power forecasting method[J]. High voltage engineering, 2016, 42(4): 1047-1060.
[7] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771.
CHI Y N, LIANG W, ZHANG Z K, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
[8] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[9] 傅质馨, 殷贵, 朱俊澎, 等. 基于EEMD和LSTM的水电机组劣化度预测方法研究[J]. 太阳能学报, 2022, 43(2): 75-81.
FU Z X, YIN G, ZHU J P, et al.Research on forecasting method of hydropower unit deterioration based on EEMD and LSTM[J]. Acta energiae solaris sinica, 2022, 43(2): 75-81.
[10] 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211.
WANG W G, WEI Y B, TENG X D.Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(3): 204-211.
[11] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[12] 董雪, 赵宏伟, 赵生校, 等. 基于二次分解和多目标优化的超短期海上风电功率预测[J]. 高电压技术, 2022, 48(8): 3260-3270.
DONG X, ZHAO H W, ZHAO S X, et al.Ultra-short-term offshore wind power forecasting based on secondary decomposition and multi-objective optimization[J]. High voltage engineering, 2022, 48(8): 3260-3270.
[13] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E.Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14: 19-29.
[14] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[15] 薛建凯. 一种新型的群智能优化技术的研究与应用:麻雀搜索算法[D]. 上海: 东华大学, 2020.
XUE J K.Research and application of a novel swarm intelligence optimization technique[D]. Shanghai: Donghua University, 2020.
[16] 张金良, 刘子毅. 基于混合模型的超短期风速区间预测[J]. 电力系统保护与控制, 2022, 50(22): 49-58.
ZHANG J L, LIU Z Y.Ultra short term wind speed interval prediction based on a hybrid model[J]. Power system protection and control, 2022, 50(22): 49-58.
[17] CHEN W T, WANG Z Z, XIE H B, et al.Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE transactions on neural systems and rehabilitation engineering, 2007, 15(2): 266-272.
[18] 陈峰, 余轶, 徐敬友, 等. 基于Bayes-LSTM网络的风电出力预测方法[J]. 电力系统保护与控制, 2023, 51(6): 170-178.
CHEN F, YU Y, XU J Y, et al.Prediction method of wind power output based on a Bayes-LSTM network[J]. Power system protection and control, 2023, 51(6): 170-178.
PDF(2557 KB)

Accesses

Citation

Detail

Sections
Recommended

/