TOPOLOGY OPTIMIZATION METHOD ON JACKET STRUCTURE OF OFFSHORE WIND TURBINE BY VARYING LEG DISTANCES

Zhang Jinhua, Du Jiazheng, Long Kai, Yao Xishan, Lu Feiyu, Geng Rongrong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 427-432.

PDF(3285 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3285 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 427-432. DOI: 10.19912/j.0254-0096.tynxb.2023-1055

TOPOLOGY OPTIMIZATION METHOD ON JACKET STRUCTURE OF OFFSHORE WIND TURBINE BY VARYING LEG DISTANCES

  • Zhang Jinhua1, Du Jiazheng1, Long Kai2, Yao Xishan2,3, Lu Feiyu2, Geng Rongrong2
Author information +
History +

Abstract

To further improve the mechanical properties of the support structure of the offshore wind turbine, a topology optimization design method is proposed by adjusting the leg distance to change the design domain. A multi-objective normalized weighted compliance minimum optimization model is established while the volume fraction and engineering manufacturing constraints are imposed as constraints. The variations of optimized topologies are analyzed. Based on IEC 61400-3 specification and finite element analysis, the ultimate load calculation and the ultimate working condition analysis of jacket are performed. Compared with NREL 5 MW offshore wind turbine, the mechanical performance of a series of optimized topologies with various leg spacing corresponding to the adjustable design domain are superior in terms of fundamental natural frequency, maximum displacement and maximum pull-out force. By altering the design domain of leg distance, the optimization results illustrate that the proposed topology optimization approach is feasible and advantageous in jacket design.

Key words

offshore wind turbines / structural design / multiobjective optimization / supports / volume fraction / natural frequencies

Cite this article

Download Citations
Zhang Jinhua, Du Jiazheng, Long Kai, Yao Xishan, Lu Feiyu, Geng Rongrong. TOPOLOGY OPTIMIZATION METHOD ON JACKET STRUCTURE OF OFFSHORE WIND TURBINE BY VARYING LEG DISTANCES[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 427-432 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1055

References

[1] WANG X F, ZENG X W, LI J L, et al.A review on recent advancements of substructures for offshore wind turbines[J]. Energy conversion and management, 2018, 158: 103-119.
[2] WU X N, HU Y, LI Y, et al.Foundations of offshore wind turbines: a review[J]. Renewable and sustainable energy reviews, 2019, 104: 379-393.
[3] WANG L, KOLIOS A, LIU X, et al.Reliability of offshore wind turbine support structures: a state-of-the-art review[J]. Renewable and sustainable energy reviews, 2022, 161: 112250.
[4] OEST J, SANDAL K, SCHAFHIRT S, et al.On gradient-based optimization of jacket structures for offshore wind turbines[J]. Wind energy, 2018, 21(11): 953-967.
[5] SANDAL K, VERBART A, STOLPE M.Conceptual jacket design by structural optimization[J]. Wind energy, 2018, 21(12): 1423-1434.
[6] SANDAL K, LATINI C, ZANIA V, et al.Integrated optimal design of jackets and foundations[J]. Marine structures, 2018, 61: 398-418.
[7] ZHENG S Y, LI C, XIAO Y Q.Efficient optimization design method of jacket structures for offshore wind turbines[J]. Marine structures, 2023, 89: 103372.
[8] WU Y F, QIU W K, XIA L, et al.Design of an aircraft engine bracket using stress-constrained bi-directional evolutionary structural optimization method[J]. Structural and multidisciplinary optimization, 2021, 64(6): 4147-4159.
[9] ZHU J H, ZHANG W H, XIA L.Topology optimization in aircraft and aerospace structures design[J]. Archives of computational methods in engineering, 2016, 23(4): 595-622.
[10] MENG L, ZHANG W H, QUAN D L, et al.From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap[J]. Archives of computational methods in engineering, 2020, 27(3): 805-830.
[11] BEGHINI L L, BEGHINI A, KATZ N, et al.Connecting architecture and engineering through structural topology optimization[J]. Engineering structures, 2014, 59: 716-726.
[12] LEE Y S, GONZÁLEZ J A, LEE J H, et al. Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[13] WANG Z J, SUIKER A S J, HOFMEYER H, et al. Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades[J]. Energy conversion and management, 2020, 212: 112621.
[14] 李宏宇, 孙鹏文, 张兰挺, 等. 基于ICM的风力机叶片多相材料拓扑优化设计[J]. 太阳能学报, 2021, 42(12): 261-266.
LI H Y, SUN P W, ZHANG L T, et al.Topology optimization design for multiphase materials of wind turbine blade based on ICM[J]. Acta energiae solaris sinica, 2021, 42(12): 261-266.
[15] 马志坤, 孙鹏文, 张兰挺, 等. 基于DMO的风力机叶片细观纤维铺角优化设计[J]. 太阳能学报, 2022, 43(4): 440-445.
MA Z K, SUN P W, ZHANG L T, et al.Optimization design of micro ply angle for wind turbines blade based on DMO[J]. Acta energiae solaris sinica, 2022, 43(4): 440-445.
[16] 刁晓航, 孙鹏文, 马志坤, 等. 基于相变量的风力机叶片宏观拓扑优化设计[J]. 太阳能学报, 2023, 44(3): 198-203.
DIAO X H, SUN P W, MA Z K, et al.Macro topology optimization design of wind turbine blade based on phase variables[J]. Acta energiae solaris sinica, 2023, 44(3): 198-203.
[17] 陆飞宇, 张承婉, 龙凯, 等. 风电机组主轴承座抗疲劳拓扑优化设计方法[J]. 太阳能学报, 2023, 44(8): 518-523.
LU F Y, ZHANG C W, LONG K, et al.Fatigue-resistance topology optimization method on main bearing seat of wind turbine[J]. Acta energiae solaris sinica, 2023, 44(8): 518-523.
[18] TIAN X J, WANG Q Y, LIU G J, et al.Topology optimization design for offshore platform jacket structure[J]. Applied ocean research, 2019, 84: 38-50.
[19] TIAN X J, SUN X Y, LIU G J, et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2022, 243: 110084.
[20] ZHANG C W, LONG K, ZHANG J H, et al.A topology optimization methodology for the offshore wind turbine jacket structure in the concept phase[J]. Ocean engineering, 2022, 266: 112974.
[21] YU Y, WEI M X, YU J X, et al.Reliability-based design method for marine structures combining topology, shape, and size optimization[J]. Ocean engineering, 2023, 286: 115490.
[22] LU F Y, LONG K, ZHANG C W, et al.A novel design of the offshore wind turbine tripod structure using topology optimization methodology[J]. Ocean engineering, 2023, 280: 114607.
[23] RONG Y, ZHAO Z L, FENG X Q, et al.Structural topology optimization with an adaptive design domain[J]. Computer methods in applied mechanics and engineering, 2022, 389: 114382.
[24] IEC 61400-3, Wind turbines-part 3: design requirements for offshore wind turbines[S].
[25] THOMAS H, ZHOU M, SCHRAMM U.Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23(2): 97-110.
[26] ZHOU M, SHYY, THOMAS H L. Checkerboard and minimum member size control in topology optimization[J]. Structural and multidisciplinary optimization, 2001, 21(2): 152-158.
[27] FLEURY C, BRAIBANT V.Structural optimization: a new dual method using mixed variables[J]. International journal for numerical methods in engineering, 1986, 23(3): 409-428.
PDF(3285 KB)

Accesses

Citation

Detail

Sections
Recommended

/