NUMERICAL STUDY ON VORTEX-INDUCED VIBRATIONS OF COMBINED WIND,WAVE, AND TIDAL POWER GENERATION DEVICE

Wang Jiazheng, Sun Hongyuan, Lin Haihua, Jiao Bo, Liu Dexin, Sun Guang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 545-552.

PDF(2767 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2767 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 545-552. DOI: 10.19912/j.0254-0096.tynxb.2023-1061

NUMERICAL STUDY ON VORTEX-INDUCED VIBRATIONS OF COMBINED WIND,WAVE, AND TIDAL POWER GENERATION DEVICE

  • Wang Jiazheng1, Sun Hongyuan1, Lin Haihua1, Jiao Bo1, Liu Dexin1, Sun Guang1
Author information +
History +

Abstract

This paper employs Fluent to simulate the hydrodynamic characteristics of the Wind, Wave, and Tidal Power Generation Device. The fluid-structure interaction simulation of a circular cylinder oscillator is achieved through the use of User-Defined Functions (UDFs) and dynamic mesh technology for analyzing the characteristics of vortex-induced vibration(VIV) of the circular cylinder oscillator. The VIV characteristics of the circular cylinder oscillator in the Wind, Wave, and Tidal Power Generation Device are analyzed from five aspects: forces, motion frequency, amplitude, trajectory, and lift-to-drag ratio. Furthermore, by comparing various motion patterns such as cylinder flow, forced motion, unidirectional vortex-induced vibration, and bidirectional vortex-induced vibration, the vortex shedding modes of the circular cylinder oscillator in the Wind, Wave, and Tidal Power Generation Device are studied. Finally, through a comparison with the classic experiment conducted by J&W, the accuracy of the simulation is validated. The research indicates that during single-direction vortex-induced vibrations, both the average value and the standard deviation of the drag coefficient of the oscillator first increase and then decrease. Lock-in occurs in the reduced velocity range of approximately 5.53 to 9.51. Compared to the flow around a cylindrical oscillator, the frequency ratio of single-direction vortex-induced vibrations increases with the reduced velocity and remains stable at approximately 1 within the lock-in range. When the flow velocity is selected within the lock-in range, the tail vortex mode for either single-direction or bidirectional vortex-induced vibrations changes from the 2S mode to the SS mode.

Key words

ocean current energy / fluid structure interaction / vortex-induced vibration / vortex shedding mode / reduced velocity / numerical simulation

Cite this article

Download Citations
Wang Jiazheng, Sun Hongyuan, Lin Haihua, Jiao Bo, Liu Dexin, Sun Guang. NUMERICAL STUDY ON VORTEX-INDUCED VIBRATIONS OF COMBINED WIND,WAVE, AND TIDAL POWER GENERATION DEVICE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 545-552 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1061

References

[1] 李磊, 张兆德, 张吉萍, 等. 考虑流固耦合的Spar型浮式风力机涡激运动特性研究[J]. 太阳能学报, 2020, 41(1): 236-241.
LI L, ZHANG Z D, ZHANG J P, et al.Study on vortex induced motion characteristics of Spar-type floating offshore wind turbine considering fluid-structure interaction[J]. Acta energiae solaris sinica, 2020, 41(1): 236-241.
[2] 孙洪源, 张举明, 单亦石, 等. 考虑阻尼比的Spar式浮式风力机基础结构涡激运动特性研究[J]. 太阳能学报, 2022, 43(1): 154-160.
SUN H Y, ZHANG J M, SHAN Y S, et al.Study on vortex induced motion characteristics of Spar-type floating base structure for offshore wind turbine under different damping ratio[J]. Acta energiae solaris sinica, 2022, 43(1): 154-160.
[3] 周斌珍, 胡俭俭, 谢彬, 等. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(6): 1641-1649.
ZHOU B Z, HU J J, XIE B, et al.Research progress in hydrodynamics of wind-wave combined power generation system[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(6): 1641-1649.
[4] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al.VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of mechanics and arctic engineering, 2008, 130(4): 041101.
[5] 吕艳芳, 李佳冀, 潘思言, 等. 涡激振动发电装置及其关键技术[J]. 装备制造技术, 2020(1): 161-165.
LYU Y F, LI J J, PAN S Y, et al.Vortex induced vibration generator and its key technology[J]. Equipment manufacturing technology, 2020(1): 161-165.
[6] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 2018, 16(1): 176-188.
LIAN J J, YAN X, LIU F.Development and prospect of study on the energy harness of flow-induced motion[J]. South-to-north water transfers and water science & technology, 2018, 16(1): 176-188.
[7] DING L, ZHANG L, BERNITSAS M M, et al.Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control[J]. Renewable energy, 2016, 85: 1246-1259.
[8] 李小超, 徐伟, 周熙林, 等. 涡激振动发电装置水动力及功率特性实验研究[J]. 浙江大学学报(工学版), 2018, 52(7): 1370-1375.
LI X C, XU W, ZHOU X L, et al.Experimental study on hydrodynamic and power characteristics of vortex-induced vibration based power generator[J]. Journal of Zhejiang University(engineering science), 2018, 52(7): 1370-1375.
[9] 王世明, 李淼淼, 李泽宇, 等. 国际潮流能利用技术发展综述[J]. 船舶工程, 2020, 42(S1): 23-28, 487.
WANG S M, LI M M, LI Z Y, et al.Development overview of international tidal energy utilization technology[J]. Ship engineering, 2020, 42(S1): 23-28, 487.
[10] 袁鹏, 陈东旺, 王树杰, 等. 涡激振动潮流能转换装置获能实验研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(10): 114-120.
YUAN P, CHEN D W, WANG S J, et al.Experimental study on vortex-induced vibration tidal current energy conversion[J]. Periodical of Ocean University of China, 2015, 45(10): 114-120.
[11] SUN H Y, WANG J Z, LIN H H, et al.Numerical study on a cylinder vibrator in the hydrodynamics of a wind-wave combined power generation system under different mass ratios[J]. Energies, 2022, 15(24): 9265.
[12] 田辰玲, 刘明月, 王世圣, 等. 张力腿平台涡激运动特性数值模拟与模型试验研究[J]. 中国海上油气, 2021, 33(1): 192-200.
TIAN C L, LIU M Y, WANG S S, et al.Numerical simulation and model test on vortex induced motion characteristics of a TLP[J]. China offshore oil and gas, 2021, 33(1): 192-200.
[13] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of fluid mechanics, 2004, 509: 23-62.
[14] COUTANCEAU M, DEFAYE J R.Circular cylinder wake configurations: a flow visualization survey[J]. Applied mechanics reviews, 1991, 44(6): 255-305.
[15] 李霖, 张志国, 王先洲, 等. 低雷诺数圆柱绕流的大涡模拟分析[J]. 舰船科学技术, 2013, 35(1): 22-26.
LI L, ZHANG Z G, WANG X Z, et al.Investigation of flow cross cylinder using large eddy simulation at low Re[J]. Ship science and technology, 2013, 35(1): 22-26.
[16] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual review of fluid mechanics, 2004, 36(1): 413-455.
PDF(2767 KB)

Accesses

Citation

Detail

Sections
Recommended

/