LOW-CARBON ECONOMIC SCHEDULING CONSIDERING WIND-PV CORRELATION AND FLEXIBLE CARBON CAPTURE IN COMPLEMENTARY SYSTEM

An Yuan, Jia Chenghao, Ning Xuyang, Gao Jiawei, Song Zhuoyang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 40-49.

PDF(1880 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1880 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 40-49. DOI: 10.19912/j.0254-0096.tynxb.2023-1077

LOW-CARBON ECONOMIC SCHEDULING CONSIDERING WIND-PV CORRELATION AND FLEXIBLE CARBON CAPTURE IN COMPLEMENTARY SYSTEM

  • An Yuan, Jia Chenghao, Ning Xuyang, Gao Jiawei, Song Zhuoyang
Author information +
History +

Abstract

A low-carbon economic dispatch strategy considering the correlation of wind-solar and flexible carbon capture is proposed to tackle the challenges of large-scale renewable energy integration. First of all, the wind-solar correlation is comprehensively considered through kernel density estimation and Copula theory. Secondly, the carbon capture power plants with flexible operation mode is analyzed and demonstrated in terms of energy transfer characteristics and peak-shaving flexibility. Ultimately, a low-carbon economic scheduling model is built with the goal of minimizing comprehensive cost considering the difference in carbon emission benchmarks before and after plant modifications. The scenario-based approach is used to capture the stochastic nature of wind-solar generation, and the CPLEX solver is employed for optimization. The results certify that taking the correlation of wind-solar and flexible carbon capture into account in the dispatch process can simultaneously enhance system economic efficiency, low-carbon performance, and improve the wind-solar energy absorption capability.

Key words

renewable energy / carbon capture / carbon trading / wind-solar joint distribution / economic dispatch

Cite this article

Download Citations
An Yuan, Jia Chenghao, Ning Xuyang, Gao Jiawei, Song Zhuoyang. LOW-CARBON ECONOMIC SCHEDULING CONSIDERING WIND-PV CORRELATION AND FLEXIBLE CARBON CAPTURE IN COMPLEMENTARY SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 40-49 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1077

References

[1] 胡志坚, 刘如, 陈志. 中国“碳中和”承诺下技术生态化发展战略思考[J]. 中国科技论坛, 2021(5): 14-20.
HU Z J, LIU R, CHEN Z.Strategic thinking on the ecological development of technology under China’s “carbon neutrality” commitment[J]. Forum on science and technology in China, 2021(5): 14-20.
[2] 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
KANG C Q, DU E S, LI Y W, et al.Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power system technology, 2022, 46(3): 821-833.
[3] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[4] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14.
DING M, WANG W S, WANG X L, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14.
[5] 王开艳, 罗先觉, 吴玲, 等. 清洁能源优先的风-水-火电力系统联合优化调度[J]. 中国电机工程学报, 2013, 33(13): 27-35.
WANG K Y, LUO X J, WU L, et al.Optimal dispatch of wind-hydro-thermal power system with priority given to clean energy[J]. Proceedings of the CSEE, 2013, 33(13): 27-35.
[6] 熊伟, 马志程, 张晓英, 等. 计及风、光消纳的风电-光伏-光热互补发电二层优化调度[J]. 太阳能学报, 2022, 43(7): 39-48.
XIONG W, MA Z C, ZHANG X Y, et al.Two-layer optimal dispatch of WF-PV-CSP hybrid power generation considering wind power and photovoltaic consumption[J]. Acta energiae solaris sinica, 2022, 43(7): 39-48.
[7] 罗远翔, 王宇航, 刘铖, 等. 风-光-火-蓄联合系统两阶段优化调度[J]. 太阳能学报, 2023, 44(1): 500-508.
LUO Y X, WANG Y H, LIU C, et al.Two-stage optimal dispatching of wind power-photovoltaic-thermal power-pumped storage combined system[J]. Acta energiae solaris sinica, 2023, 44(1): 500-508.
[8] 谢敏, 熊靖, 刘明波, 等. 基于Copula的多风电场出力相关性建模及其在电网经济调度中的应用[J]. 电网技术, 2016, 40(4): 1100-1106.
XIE M, XIONG J, LIU M B, et al.Modeling of multi wind farm output correlation based on Copula and its application in power system economic dispatch[J]. Power system technology, 2016, 40(4): 1100-1106.
[9] 钟嘉庆, 李茂林, 江静, 等. 基于Copula理论的风/光出力预测误差分析方法的研究[J]. 电工电能新技术, 2017, 36(6): 39-46.
ZHONG J Q, LI M L, JIANG J, et al.Method of wind/solar output forecast error analysis based on Copula theory[J]. Advanced technology of electrical engineering and energy, 2017, 36(6): 39-46.
[10] 肖白, 吕丹琪, 张舒捷, 等. 基于Markov链和Copula理论的风光联合输出功率时间序列模拟生成方法[J]. 现代电力, 2020, 37(3): 245-255.
XIAO B, LYU D Q, ZHANG S J, et al.Simulation methods to generate time series for joint wind and photovoltaic power output basede on Markov chain and Copula theory[J]. Modern electric power, 2020, 37(3): 245-255.
[11] 康重庆, 季震, 陈启鑫. 碳捕集电厂灵活运行方法评述与展望[J]. 电力系统自动化, 2012, 36(6): 1-10.
KANG C Q, JI Z, CHEN Q X.Review and prospects of flexible operation of carbon capture power plants[J]. Automation of electric power systems, 2012, 36(6): 1-10.
[12] 卢志刚, 隋玉珊, 冯涛, 等. 考虑储热装置与碳捕集设备的风电消纳低碳经济调度[J]. 电工技术学报, 2016, 31(17): 41-51.
LU Z G, SUI Y S, FENG T, et al.Wind power accommodation low-carbon economic dispatch considering heat accumulator and carbon capture devices[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 41-51.
[13] 季震, 陈启鑫, 张宁, 等. 含碳捕集电厂的低碳电源规划模型[J]. 电网技术, 2013, 37(10): 2689-2696.
JI Z, CHEN Q X, ZHANG N, et al.Low-carbon generation expansion planning model incorporating carbon capture power plant[J]. Power system technology, 2013, 37(10): 2689-2696.
[14] 林顺富, 刘持涛, 李东东, 等. 考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J]. 中国电机工程学报, 2020, 40(5): 1409-1421.
LIN S F, LIU C T, LI D D, et al.Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids[J]. Proceedings of the CSEE, 2020, 40(5): 1409-1421.
[15] 宋宇, 李涵. 基于核密度估计和Copula函数的风、光出力场景生成[J]. 电气技术, 2022, 23(1): 56-63.
SONG Y, LI H.Typical scene generation of wind and photovoltaic power output based on kernel density estimation and Copula function[J]. Electrical engineering, 2022, 23(1): 56-63.
[16] GAO C, LIN J J, ZENG J F, et al.Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP[J]. Applied energy, 328: 120205.
[17] 程耀华, 杜尔顺, 田旭, 等. 电力系统中的碳捕集电厂: 研究综述及发展新动向[J]. 全球能源互联网, 2020, 3(4): 339-350.
CHENG Y H, DU E S, TIAN X, et al.Carbon capture power plants in power systems: review and latest research trends[J]. Journal of global energy interconnection, 2020, 3(4): 339-350.
[18] 朱振山, 盛明鼎, 陈哲盛. 计及液态空气储能与综合需求响应的综合能源系统低碳经济调度[J]. 电力自动化设备, 2022, 42(12): 1-8.
ZHU Z S, SHENG M D, CHEN Z S.Low-carbon economic dispatching of integrated energy system considering liquid air energy storage and integrated demand response[J]. Electric power automation equipment, 2022, 42(12): 1-8.
[19] 孔丽蓓. 基于线性潮流的新能源电力系统时序生产模拟技术[J]. 电工技术, 2022(21): 47-50.
KONG L B.Simulation technology of sequential production of new energy power system based on linear power flow[J]. Electric engineering, 2022(21): 47-50.
[20] 崔杨, 邓贵波, 赵钰婷, 等. 考虑源荷低碳特性互补的含风电电力系统经济调度[J]. 中国电机工程学报, 2021, 41(14): 4799-4815.
CUI Y, DENG G B, ZHAO Y T, et al.Economic dispatch of power system with wind power considering the complementarity of low-carbon characteristics of source side and load side[J]. Proceedings of the CSEE, 2021, 41(14): 4799-4815.
[21] 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16): 5869-5886.
CUI Y, DENG G B, ZENG P, et al.Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886.
[22] 生态环境部. 关于做好2021、2022年度全国碳排放权交易配额分配相关工作的通知[EB/OL].[2023-03-15]. https//www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202303/t20230315_1019707.html.
Ministry of Ecology and Environment. Notice on doing a good job in the allocation of national carbon emission trading quotas for2021 and 2022[EB/OL].[2023-03-15]. https//www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202303/t20230315_1019707.html.
[23] 吴雄, 王秀丽, 别朝红, 等. 含热电联供系统的微网经济运行[J]. 电力自动化设备, 2013, 33(8): 1-6.
WU X, WANG X L, BIE Z H, et al.Economic operation of microgrid with combined heat and power system[J]. Electric power automation equipment, 2013, 33(8): 1-6.
PDF(1880 KB)

Accesses

Citation

Detail

Sections
Recommended

/