PREPARATION AND STUDY ON PHOTOTHERMAL CONVERSION AND STORAGE PERFORMANCE OF SUGAR ALCOHOL-BASED COMPOSITE PHASE CHANGE MATERIALS

Qian Cuncun, Li Mingjia, Zhang Hongtai

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 627-635.

PDF(4477 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4477 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 627-635. DOI: 10.19912/j.0254-0096.tynxb.2023-1078

PREPARATION AND STUDY ON PHOTOTHERMAL CONVERSION AND STORAGE PERFORMANCE OF SUGAR ALCOHOL-BASED COMPOSITE PHASE CHANGE MATERIALS

  • Qian Cuncun1, Li Mingjia2, Zhang Hongtai1
Author information +
History +

Abstract

To enhance the direct solar-thermal conversion and storage performance of sugar alcohol-based phase change materials (PCMs) and promote their large-scale application in solar thermal energy storage, Xy-in-EG (94 ℃) and Er-in-EG (120 ℃) composite PCMs with high thermal conductivity and excellent light-to-thermal conversion efficiency were prepared using mechanical mixing and melting vacuum adsorption. Xylitol and erythritol served as PCM precursors, while expanded graphite (EG) was used as a thermal conductivity additive. The application of these composite PCMs in solar-thermal direct conversion and storage was systematically investigated. The results show that with 25% EG content, the maximum thermal conductivity of the Xy-in-EG and Er-in-EG composite PCMs reached 4.39 W/(m·K) and 3.61 W/(m·K), respectively, which is approximately an order of magnitude higher than that of the original PCMs. When the EG content was 15%, the solar spectral absorptivity of the composite PCMs reached 84.3% and 86.9%, respectively. At this concentration, the composite PCMs achieved stable encapsulation, without issues such as phase transition leakage caused by phase separation during the heating and melting phase transition processes. Furthermore, in solar-thermal direct conversion and storage experiments, the solar-thermal conversion efficiency of Xy-in-15%EG and Er-in-15%EG composite PCMs increased by~63.3% and 79.5%, respectively, compared to commercial xylitol and erythritol PCMs. The photothermal storage rate of Er-in-15%EG was 3.2 times higher than that of commercial erythritol.

Key words

phase change materials / thermal conductivity / solar energy / photo-thermal conversion / thermal energy storage

Cite this article

Download Citations
Qian Cuncun, Li Mingjia, Zhang Hongtai. PREPARATION AND STUDY ON PHOTOTHERMAL CONVERSION AND STORAGE PERFORMANCE OF SUGAR ALCOHOL-BASED COMPOSITE PHASE CHANGE MATERIALS[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 627-635 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1078

References

[1] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): aad1920.
[2] TIAN Y, ZHAO C Y.A review of solar collectors and thermal energy storage in solar thermal applications[J]. Applied energy, 2013, 104: 538-553.
[3] 闫全英, 王晨羽, 梁高金, 等. 用添加剂强化有机相变材料导热性能的研究[J]. 太阳能学报, 2021, 42(9): 205-209.
YAN Q Y, WANG C Y, LIANG G J, et al.Study on enhancing thermal conductivity of organic phase change materials with additives[J]. Acta energiae solaris sinica, 2021, 42(9): 205-209.
[4] 刘旻瑞, 孙志高, 李成浩, 等. 硬脂酸-十八醇二元复合相变材料性能研究[J]. 太阳能学报, 2019, 40(6): 1553-1559.
LIU M R, SUN Z G, LI C H, et al.Study on properties of stearic acid-stearyl alcohol binary composite phase change materials[J]. Acta energiae solaris sinica, 2019, 40(6): 1553-1559.
[5] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256.
[6] 邵雪峰, 朱子钦, 吴杰, 等. 糖醇及二元共晶混合物的相变储/释热特性[J]. 工程热物理学报, 2019, 40(1):10-16.
SHAO X F, ZHU Z Q, WU J, et al.Phase change heat storage/retrieval performance of sugar alcohols and their binary eutectic mixtures[J]. Journal of engineering thermophysics, 2019, 40(1): 10-16.
[7] 闫晓鑫, 冯妍卉, 邱琳, 等. 赤藓糖醇/碳纳米管复合相变材料热特性模拟研究[J]. 工程科学学报, 2022, 44(4):722-729.
YAN X X, FENG Y H, QIU L, et al.Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials[J]. Chinese journal of engineering, 2022, 44(4): 722-729.
[8] 杨瑜锴, 夏永鹏, 徐芬, 等. 赤藓糖醇相变储热材料研究进展[J]. 化工进展, 2022, 41(8): 4357-4366.
YANG Y K, XIA Y P, XU F, et al.Research progress of erythritol phase change materials for thermal storage[J]. Chemical industry and engineering progress, 2022, 41(8): 4357-4366.
[9] LI M J, LI M J, TONG Z X, et al.Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature[J]. Applied thermal engineering, 2021, 186(5): 116473.
[10] YUAN F, LI M J, QIU Y, et al.Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes[J]. Applied energy, 2019, 250: 1481-1490.
[11] 罗凯, 叶伟梁, 王艳, 等. 太阳能生活热水系统相变储能研究进展[J]. 太阳能学报, 2022, 43(5): 220-229.
LUO K, YE W L, WANG Y, et al.Research progress of phase change energy storage in solar domestic hot water system[J]. Acta energiae solaris sinica, 2022, 43(5): 220-229.
[12] TAO P, CHANG C, TONG Z, et al.Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials[J]. Energy & environmental science, 2019, 12(5): 1613-1621.
[13] ZHANG P F, QIU Y, YE C, et al.Anisotropically conductive phase change composites enabled by aligned continuous carbon fibers for full-spectrum solar thermal energy harvesting[J]. Chemical engineering journal, 2023, 461: 141940.
[14] ZHOU H, LV L Q, ZHANG Y Z, et al.Preparation and characterization of a shape-stable xylitol/expanded graphite composite phase change material for thermal energy storage[J]. Solar energy materials and solar cells, 2021, 230: 111244.
[15] YUAN M D, REN Y X, XU C, et al.Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable energy, 2019, 136: 211-222.
[16] LU B H, ZHANG Y X, SUN D, et al.Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage[J]. Renewable energy, 2021, 178: 669-678.
[17] GAO L H, ZHAO J, AN Q S, et al.Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied thermal engineering, 2017, 113: 858-866.
[18] ZENG J L, GAN J, ZHU F R, et al.Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage[J]. Solar energy materials and solar cells, 2014, 127: 122-128.
[19] LEE S Y, SHIN H K, PARK M, et al.Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity[J]. Carbon, 2014, 68: 67-72.
[20] OYA T, NOMURA T, TSUBOTA M, et al.Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles[J]. Applied Thermal Engineering, 2013, 61(2): 825-828.
[21] ZHANG Q, LUO Z L, GUO Q L, et al.Preparation and thermal properties of short carbon fibers/erythritol phase change materials[J]. Energy conversion and management, 2017, 136: 220-228.
[22] KHOLMANOV I, KIM J, OU E, et al.Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials[J]. ACS nano, 2015, 9(12): 11699-11707.
PDF(4477 KB)

Accesses

Citation

Detail

Sections
Recommended

/