PEMFC SYSTEM MODELING AND CONTROL OF OXYGEN EXCESS RATIO IN AIR SUPPLY SUBSYSTEM

Liu Yan, Xiao Chun, Chen Jing, Wu Wei, Wu Haojian

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 709-717.

PDF(3460 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3460 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 709-717. DOI: 10.19912/j.0254-0096.tynxb.2023-1081

PEMFC SYSTEM MODELING AND CONTROL OF OXYGEN EXCESS RATIO IN AIR SUPPLY SUBSYSTEM

  • Liu Yan1,2, Xiao Chun1,2, Chen Jing1,2, Wu Wei1, Wu Haojian2,3
Author information +
History +

Abstract

Aiming at the problem of controlling the excess ratio of oxygen in the air supply subsystem of proton exchange membrane fuel cells. Firstly, a control-oriented fourth-order nonlinear dynamic model of the proton exchange membrane fuel cells system is established, and a fitting curve equation between the stack load current and the optimal oxygen excess ratio is constructed. Subsequently, a sliding mode controller using a new compound reaching law is designed, and the parameters in the sliding mode control are optimized and tuned using the sand cat swarm optimization algorithm. Finally, the improved sliding mode controller is simulated and verified, and compared with PID and other three sliding mode controllers. The simulation results show that when the load current of the stack changes, the improved sliding mode controller can adjust the driving voltage of the air compressor according to the cathode flow deviation parameter. At this time, the real-time oxygen excess ratio of the system will quickly approach the optimal oxygen excess ratio. The deviation between the two can be controlled within 0.1%, and the required average adjustment time and error performance indicators are better than those of the comparison group.

Key words

proton exchange membrane fuel cells / air supply subsystem / sliding mode control / sand cat swarm optimization algorithm / oxygen excess ratio

Cite this article

Download Citations
Liu Yan, Xiao Chun, Chen Jing, Wu Wei, Wu Haojian. PEMFC SYSTEM MODELING AND CONTROL OF OXYGEN EXCESS RATIO IN AIR SUPPLY SUBSYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 709-717 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1081

References

[1] FAN L X, TU Z K, CHAN S H.Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: theory, integration and prospective[J]. International journal of hydrogen energy, 2023, 48(21): 7828-7865.
[2] 侯绪凯, 赵田田, 孙荣峰, 等. 中国氢燃料电池技术发展及应用现状研究[J]. 当代化工研究, 2022(17): 112-117.
HOU X K, ZHAO T T, SUN R F, et al.Research on the development and application status of hydrogen fuel cell technology in China[J]. Modern chemical research, 2022(17): 112-117.
[3] ZHU Y, ZOU J X, LI S, et al.Nonlinear model predictive control of PEMFC anode hydrogen circulation system based on dynamic coupling analysis[J]. International journal of hydrogen energy, 2023, 48(6): 2385-2400.
[4] LIU H Y, YIN H, DING T W, et al.Cathode pressure control of air supply system for PEMFC[J]. IFAC-Papers OnLine, 2021, 54(10): 247-252.
[5] 刘阳, 陈奔. 车用PEMFC氢气系统建模及其排放特性研究[J]. 太阳能学报, 2023, 44(2): 260-268.
LIU Y, CHEN B.Modeling and emission characteristics study of PEMFC hydrogen system for vehicles[J]. Acta energiae solaris sinica, 2023, 44(2): 260-268.
[6] 马明辉, 郝冬, 郭帅帅, 等. 燃料电池发动机氢气供给系统技术分析[J]. 汽车零部件, 2021, 155(5): 95-98.
MA M H, HAO D, GUO S S, et al.Analysis on anode hydrogen supply system of fuel cell engine[J]. Automobile parts, 2021(5): 95-98.
[7] TANG X, WANG C S, HU Y K, et al.Adaptive fuzzy PID based on granular function for proton exchange membrane fuel cell oxygen excess ratio control[J]. Energies, 2021, 14(4): 1140.
[8] ZHANG H K, WANG Y F, WANG D H, et al.Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system[J]. Information sciences, 2020, 511(C): 1-17.
[9] LI M, LU J H, HU Y F, et al.Oxygen excess ratio controller design of PEM fuel cell[J]. IFAC-Papers OnLine, 2018, 51(31): 493-498.
[10] PUKRUSHPAN J T, STEFANOPOULOU A G, PENG H.Control of fuel cell breathing[J]. IEEE control systems magazine, 2004, 24(2): 30-46.
[11] LI J W, YU T.Intelligent controller based on distributed deep reinforcement learning for PEMFC air supply system[J]. IEEE access, 2021, 9: 7496-7507.
[12] YANG D, PAN R, WANG Y J, et al.Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control[J]. Energy, 2019, 188: 116078.
[13] 胡佳丽, 赵春鹏, 肖铎. 水冷燃料电池空气供给系统建模与控制研究[J]. 太阳能学报, 2021, 42(9): 428-433.
HU J L, ZHAO C P, XIAO D.Modeling and control analysis of water-cooled PEM fuel cell air supply system[J]. Acta energiae solaris sinica, 2021, 42(9): 428-433.
[14] ZHU J, ZHANG P, LI X, et al.Robust oxygen excess ratio control of PEMFC systems using adaptive dynamic programming[J]. Energy reports, 2022, 8: 2036-2044.
[15] 雷城, 蓝益鹏, 徐泽来, 等. 一种新型复合滑模趋近律设计与分析[J]. 控制与决策, 2023, 38(2): 435-440.
LEI C, LAN Y P, XU Z L, et al.Design and analysis of a new compound sliding mode reaching law[J]. Control and decision, 2023, 38(2): 435-440.
[16] WANG, Y Q, FENG, Y T, ZHANG X G, et al.A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system[J]. IEEE transactions on power electronics, 2020, 35(4): 4117-4126.
[17] SEYYEDABBASI A, KIANI F.Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems[J]. Engineering with computers, 2023, 39(4): 2627-2651.
[18] ABOUOMAR M S, ZHANG H J, SU Y X.Fractional order fuzzy PID control of automotive PEM fuel cell air feed system using neural network optimization algorithm[J]. Energies, 2019, 12(8): 1435.
[19] 胡广地, 景浩, 李丞, 等. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
HU G D, JING H, LI C, et al.Multi-objective sliding mode control based on high-order fuel cell model[J]. Journal of Jilin University(engineering and technology edition), 2022, 52(9): 2182-2191.
[20] WANG Y H, LI H T, FENG H M, et al.Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID[J]. Energy conversion and management, 2021, 249(1): 114851.
PDF(3460 KB)

Accesses

Citation

Detail

Sections
Recommended

/