APPLICATION ANALYSIS OF CO-ROTATING AND COUNTER-ROTATING VORTEX GENERATORS IN WIND TURBINES

Zhao Shuchun, Zheng Kangle, Ma Junxiang, Dang Zhengwen, Han Jianfeng, Zhao Zhenzhou

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 433-438.

PDF(2514 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2514 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 433-438. DOI: 10.19912/j.0254-0096.tynxb.2023-1083

APPLICATION ANALYSIS OF CO-ROTATING AND COUNTER-ROTATING VORTEX GENERATORS IN WIND TURBINES

  • Zhao Shuchun1, Zheng Kangle1, Ma Junxiang1, Dang Zhengwen1, Han Jianfeng1, Zhao Zhenzhou2
Author information +
History +

Abstract

We employed the transition model to examine both counter-rotational (Cot) and co-rotational (Co) VGs, initially focusing on a plane before analyzing the NREL Phase Ⅵ wind turbine. The plane-based VG study aimed to understand Cot-and Co-VGs behavior under large inflow angles. Analyzing the flow field across sections and the output torque at varying wind speeds, we explored the VGs installation impacts under TDRE. The simulation findings were juxtaposed with NREL test data, confirming that our calculations align well with experimental values, with a peak torque error of 9.3%. Results from the plane study indicated that Cot-VGs’behavior starts resembling that of Co-VGs, with the former displaying reduced efficiency at extensive inflow angles. Findings from the wind turbine study revealed that VGs enhance blade output power and delay the airfoil surface’s separation point, particularly prominent at the leading edge. With the wind turbine’s TDRE in play, Co-VGs demonstrate superior performance over Cot-VGs.

Key words

wind turbines / numerical simulation / flow control / co-rotational vortex generators / phase Ⅵ wind turbine / rotational effect

Cite this article

Download Citations
Zhao Shuchun, Zheng Kangle, Ma Junxiang, Dang Zhengwen, Han Jianfeng, Zhao Zhenzhou. APPLICATION ANALYSIS OF CO-ROTATING AND COUNTER-ROTATING VORTEX GENERATORS IN WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 433-438 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1083

References

[1] ARAMENDIA I, FERNANDEZ-GAMIZ U, RAMOS-HERNANZ J A, et al. Flow control devices for wind turbines[M]//BIZON N, MAHDAVI TABATABAEI N, BLAABJERG F, et al. Energy Harvesting and Energy Efficiency. Cham: Springer, 2017: 629-655.
[2] 冯俊鑫, 赵振宙, 刘惠文, 等. 涡流发生器形状对DU91-W2-250翼型动态失速的影响机理分析[J]. 太阳能学报, 2022, 43(12): 368-374.
FENG J X, ZHAO Z Z, LIU H W, et al.Analysis of influence machism of vgs shape parameters on dynamic stall of DU91-W2-250 airfoil[J]. Acta energiae solaris sinica, 2022, 43(12): 368-374.
[3] 江瑞芳, 赵振宙, 王同光, 等. 涡流发生器弦向位置对翼型动态失速的影响机理[J]. 太阳能学报, 2022, 43(11): 253-258.
JIANG R F, ZHAO Z Z, WANG T G, et al.Influence of vortex generators chord position on airfoil dynamic stall[J]. Acta energiae solaris sinica, 2022, 43(11): 253-258.
[4] 张磊, 杨科, 徐建中. 涡流发生器对风力机专用翼型气动特性的影响[J]. 工程热物理学报, 2010, 31(5): 749-752.
ZHANG L, YANG K, XU J Z.Effects on wind turbine airfoils by vortex generators[J]. Journal of engineering thermophysics, 2010, 31(5): 749-752.
[5] YANG K, ZHANG L, XU J Z.Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils[J]. Science in China series E: technological sciences, 2010, 53(1): 1-7.
[6] GAO L Y, ZHANG H, LIU Y Q, et al., Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable energy, 2015, 76: 303-311.
[7] BALDACCHINO D, FERREIRA C, DE TAVERNIER D, et al.Experimental parameter study for passive vortex generators on a 30% thick airfoil[J]. Wind energy, 2018, 21(9): 745-765.
[8] WANG H P, ZHANG B, QIU Q G, et al.Flow control on the NREL S809 wind turbine airfoil using vortex generators[J]. Energy, 2017, 118: 1210-1221.
[9] ZHU C Y, CHEN J, WU J H, et al.Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators[J]. Energy, 2019, 189: 116272.
[10] ZHU C Y, WANG T G, CHEN J, et al.Effect of single-row and double-row passive vortex generators on the deep dynamic stall of a wind turbine airfoil[J]. Energies, 2020, 13(10): 2535.
[11] ZHAO Z Z, LI T., WANG T G, et al., Numerical investigation on wind turbine vortex generators employing transition models[J]. Journal of renewable and sustainable energy, 2015, 7(6): 1-19.
[12] SAENZ-AGUIRRE A, FERNANDEZ-GAMIZ U, ZULUETA E, et al.Flow control based 5 MW wind turbine enhanced energy production for hydrogen generation cost reduction[J]. International journal of hydrogen energy, 2022, 47(11): 7049-7061.
[13] TIAN Q, CORSON D, BAKER J P.Application of vortex generators to wind turbine blades[C]//34th Wind Energy Symposium. San Diego, California, USA, 2016: 0518.
[14] LEE H M, KWON O J.Numerical simulation of horizontal axis wind turbines with vortex generators[J]. International journal of aeronautical and space sciences, 2019, 20(2): 325-334.
[15] JOHANSEN J., SØRENSEN N.N., RECK M., et al., Rotor blade computation with 3D vortex generators[R]. Risø National Laboratory, Riso-R-1486, Rlskilde Denmark, 2005.
[16] GODARD G, STANISLAS M.Control of a decelerating boundary layer Part 1: optimization of passive vortex generators[J]. Aerospace science and technology, 2006, 10(3): 181-191.
[17] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation based transition model using localvariables-part I: model formulation[C]//Proceedings of 2004 ASME TurboExpo. Vienna, Austria: ASME, 2004.
[18] PAULEY W R, EATON J K.Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer[J]. AIAA journal, 1988, 26(7): 816-823.
[19] HAND M M, SIMMS D A, FINGERSH L J, et al.Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. National Renewable Energy Lab., Golden, CO.(US), 2001.
PDF(2514 KB)

Accesses

Citation

Detail

Sections
Recommended

/