RESONANCE SUPPRESSION STRATEGY FOR DC MICROGRIDS CONSIDERING STEP-DOWN TYPE CONTROL ALGORITHMS

Zheng Feng, Wu Xudong, Zheng Zonghua, Liang Ning

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 61-72.

PDF(6448 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(6448 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 61-72. DOI: 10.19912/j.0254-0096.tynxb.2023-1104

RESONANCE SUPPRESSION STRATEGY FOR DC MICROGRIDS CONSIDERING STEP-DOWN TYPE CONTROL ALGORITHMS

  • Zheng Feng1, Wu Xudong1, Zheng Zonghua1, Liang Ning2
Author information +
History +

Abstract

In order to suppress microgrid resonance and bus voltage fluctuation and further improve system stability, a novel resonance suppression strategy based on fully reduced order hybrid control algorithm is proposed. The output voltage of LRC is controlled, and the current prediction model is introduced into the inner loop to improve the dynamic response speed of the system and eliminate the PWM modulator and parameter setting, so as to realize the unit of the inner loop of current. The inverse model of the controlled object is constructed in the outer loop to realize the unitization of the voltage outer loop under the control of two-degree-of-freedom. The bus voltage can completely follow the reference voltage and restrain the resonance peak in the voltage transfer function and the bus voltage fluctuation. Finally, the proposed fully reduced order hybrid control algorithm is simulated and verified on Matlab/Simulink platform. The results show that the proposed control strategy can effectively suppress the DC microgrid resonance and bus voltage fluctuation, and improve the dynamic characteristics and anti-interference ability of the microgrid.

Key words

DC microgrid / voltage control / circuit resonance / model predictive control / two-degree-of-freedom control

Cite this article

Download Citations
Zheng Feng, Wu Xudong, Zheng Zonghua, Liang Ning. RESONANCE SUPPRESSION STRATEGY FOR DC MICROGRIDS CONSIDERING STEP-DOWN TYPE CONTROL ALGORITHMS[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 61-72 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1104

References

[1] 郑凯元, 杜文娟, 王海风. 动态单元间交互作用对直流微电网稳定性影响的分析[J]. 中国电机工程学报, 2021, 41(23): 7963-7979.
ZHENG K Y, DU W J, WANG H F.Analysis on the stability of DC microgrid affected by interactions among dynamic components[J]. Proceedings of the CSEE, 2021, 41(23): 7963-7979.
[2] 赖钧杰, 文小玲, 张淇, 等. 基于改进麻雀搜索算法的直流微电网容量优化配置[J]. 太阳能学报, 2023, 44(8): 157-163.
LAI J J, WEN X L, ZHANG Q, et al.Capacity optimization configuration of DC microgrid based on improved sparrow search algorithm[J]. Acta energiae solaris sinica, 2023, 44(8): 157-163.
[3] HERRERA L, ZHANG W, WANG J.Stability analysis and controller design of DC microgrids with constant power loads[J]. IEEE transactions on smart grid, 2017, 8(2): 881-888.
[4] 郭力, 冯怿彬, 李霞林, 等. 直流微电网稳定性分析及阻尼控制方法研究[J]. 中国电机工程学报, 2016, 36(4): 927-936.
GUO L, FENG Y B, LI X L, et al.Stability analysis and research of active damping method for DC microgrids[J]. Proceedings of the CSEE, 2016, 36(4): 927-936.
[5] 杨翔宇, 肖先勇, 马俊鹏, 等. 基于电感电流反馈的双向DC-DC变换器下垂控制[J]. 中国电机工程学报, 2020, 40(8): 2638-2646.
YANG X Y, XIAO X Y, MA J P, et al.Droop control of Bi-directional DC-DC converters based on inductive current feedback[J]. Proceedings of the CSEE, 2020, 40(8): 2638-2646.
[6] 黄旭程, 何志兴, 伍文华, 等. 交直流微电网中变换器级联系统稳定性分析与协同控制[J]. 中国电机工程学报, 2019, 39(5): 1432-1442.
HUANG X C, HE Z X, WU W H, et al.Stability analysis of converters cascade system in the hybrid AC/DC microgird and coordinative control[J]. Proceedings of the CSEE, 2019, 39(5): 1432-1442.
[7] CUPELLI M, ZHU L, MONTI A.Why ideal constant power loads are not the worst case condition from a control standpoint[C]//2015 IEEE Power & Energy Society General Meeting. Denver, CO, USA, 2015: 1.
[8] 朱晓荣, 韩丹慧, 孟凡奇, 等. 提高直流微电网稳定性的并网换流器串联虚拟阻抗方法[J]. 电网技术, 2019, 43(12): 4523-4531.
ZHU X R, HAN D H, MENG F Q, et al.Grid converter series virtual impedance method for improving DC microgrid stability[J]. Power system technology, 2019, 43(12): 4523-4531.
[9] 刘子文, 苗世洪, 范志华, 等. 孤立交直流混合微电网双向AC/DC换流器功率控制与电压波动抑制策略[J]. 中国电机工程学报, 2019, 39(21): 6225-6237.
LIU Z W, MIAO S H, FAN Z H, et al.Power control and voltage fluctuation suppression strategy of the bidirectional AC/DC converter in the islanding hybrid microgrid[J]. Proceedings of the CSEE, 2019, 39(21): 6225-6237.
[10] 林刚, 李勇, 王姿雅, 等. 直流微网谐振模态分析及有源阻尼抑制方法[J]. 电力自动化设备, 2019, 39(4): 119-125, 132.
LIN G, LI Y, WANG Z Y, et al.Resonance modal analysis and active damping suppression method for DC microgrid[J]. Electric power automation equipment, 2019, 39(4): 119-125, 132.
[11] 黄森年, 韩博文, 朱革兰, 等. 基于虚拟RC控制的直流微网多恒功率负载并联谐振抑制策略[J]. 高电压技术, 2019, 45(10): 3173-3181.
HUANG S N, HAN B W, ZHU G L, et al.Suppression strategy for multi-CPL parallel resonance of DC microgrids based on virtual RC control[J]. High voltage engineering, 2019, 45(10): 3173-3181.
[12] 刘晓东, 胡勇, 方炜, 等. 直流微电网节点阻抗特性与系统稳定性分析[J]. 电网技术, 2015, 39(12): 3463-3469.
LIU X D, HU Y, FANG W, et al.Analysis of node impedance characteristics and stability in DC microgrids[J]. Power system technology, 2015, 39(12): 3463-3469.
[13] 张建新, 刘昶时. 辐射对太阳电池光电输出性能影响的定量研究[J]. 太阳能学报, 2022, 43(11): 20-25.
ZHANG J X, LIU C S.Quantitative study influence of radiation on photoelectric output performance of solar cells[J]. Acta energiae solaris sinica, 2022, 43(11): 20-25.
[14] 王仁明, 张铭锐, 鲍刚, 等. 基于拟合反演滑模方法的光伏系统MPPT控制[J]. 太阳能学报, 2023, 44(8): 224-231.
WANG R M, ZHANG M R, BAO G, et al.MPPT control of photovoltaic system based on fitting backstepping sliding mode method[J]. Acta energiae solaris sinica, 2023, 44(8): 224-231.
[15] WU W M, HE Y B, TANG T H, et al.A new design method for the passive damped LCL and LLCL filter-based single-phase grid-tied inverter[J]. IEEE transactions on industrial electronics, 2013, 60(10): 4339-4350.
[16] 薛阳, 黄薪操, 席东翔, 等. 基于叠加频率的直流微电网改进下垂控制策略研究[J]. 太阳能学报, 2022, 43(9): 461-467.
XUE Y, HUANG X C, XI D X, et al.Researchon improved droop control strategyof DC microgrid based on superimposed frequency[J]. Acta energiae solaris sinica, 2022, 43(9): 461-467.
[17] WANG J, MONTI A.Current control of grid connected inverter with LCL filter utilizing two degree-of-freedom control[C]//2013 International Conference on Renewable Energy Research and Applications (ICRERA). Madrid, Spain, 2013: 967-972.
[18] 洪剑峰, 张兴, 曹仁贤, 等. 三电平并网逆变器基于有限集模型预测控制的新型谐波抑制策略[J]. 太阳能学报, 2022, 43(4): 184-190.
HONG J F, ZHANG X, CAO R X, et al.Novel harmonic suppresion strategy for three-level grid-connected inverter based on finite control set model predictive control[J]. Acta energiae solaris sinica, 2022, 43(4): 184-190.
[19] 朱晓荣, 马英乔, 赵澄颢. 基于模型预测控制算法的多风储直流微电网分布式电压二次控制策略[J]. 电力自动化设备, 2021, 41(10): 184-191.
ZHU X R, MA Y Q, ZHAO C H.Distributed voltage secondary control strategy of multi wind-storage DC microgrid based on model predictive control algorithm[J]. Electric power automation equipment, 2021, 41(10): 184-191.
[20] WANG C S, LI X L, GUO L, et al.A seamless operation mode transition control strategy for a microgrid based on master-slave control[J]. Science China technological sciences, 2012, 55(6): 1644-1654.
[21] XIA C L, LIU T, SHI T N, et al.A simplified finite-control-set model-predictive control for power converters[J]. IEEE transactions on industrial informatics, 2014, 10(2): 991-1002.
[22] 薛花, 任春雷, 张晓雯, 等. 基于一致性理论的直流微电网多电力弹簧分布式电压平稳控制方法[J]. 中国电机工程学报, 2021, 41(21): 7285-7303.
XUE H, REN C L, ZHANG X W, et al.Distributed consensus-based voltage regulation control of multiple DC electric springs in DC microgrid[J]. Proceedings of the CSEE, 2021, 41(21): 7285-7303.
[23] 汪杨俊. 模型预测控制在大功率低开关频率并网逆变器中的应用[D]. 合肥: 合肥工业大学, 2015.
WANG Y J.Application of model predictive control in grid-connected inverter with high power and low switching frequency[D]. Hefei: Hefei University of Technology, 2015.
PDF(6448 KB)

Accesses

Citation

Detail

Sections
Recommended

/