STUDY ON SELF-SUSTAINABILITY OF ELASTIC BUOY MOORING SYSTEM OF SHALLOW WATER WAVE ENERGY PLATFORM

Zhang Zihao, Zhao Guoqing, Sheng Qihu, Geng Jing, Li Mingwei

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 570-577.

PDF(2265 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2265 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 570-577. DOI: 10.19912/j.0254-0096.tynxb.2023-1109

STUDY ON SELF-SUSTAINABILITY OF ELASTIC BUOY MOORING SYSTEM OF SHALLOW WATER WAVE ENERGY PLATFORM

  • Zhang Zihao1, Zhao Guoqing2, Sheng Qihu1, Geng Jing1, Li Mingwei1
Author information +
History +

Abstract

In China, most of the wave energy converter (WEC) is located at shallow water where the coral reef seabed cannot withstand excessive loads. To survival in frequent typhoon, design methods and dynamic analysis on the mooring system of “Nankun” WEC are studied. In the paper, three kinds of mooring lines is surveyed, which include the case of catenary, catenary + elastic cable, catenary + pontoon+elastic cable. Comparative studies show that: compared with the catenary case, elastic cable can reduce the mooring tension and increase the horizontal displacement of WEC, elastic cable+ pontoon can further reduce the mooring tension and reduce horizontal displacement of WEC. Theoretically, The catenary+pontoon+elastic cable is the best solution of mooring system of WECs n adapting to the harsh environment of shallow water.

Key words

wave energy converter (WEC) / mooring system in shallow water / elastic cable / coral reef geology / mooring tension

Cite this article

Download Citations
Zhang Zihao, Zhao Guoqing, Sheng Qihu, Geng Jing, Li Mingwei. STUDY ON SELF-SUSTAINABILITY OF ELASTIC BUOY MOORING SYSTEM OF SHALLOW WATER WAVE ENERGY PLATFORM[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 570-577 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1109

References

[1] 自然资源部. 2017年海岛统计调查公报[J]. 国土资源通讯, 2018(16): 31-35, 38.
Ministry of Natural Resources. 2017 island statistical survey bulletin[J]. National land & resources information, 2018 (16): 31-35, 38.
[2] 袁韩生, 孙锦余, 刘巍. 柴油发电机余热在海岛能源供应中的应用研究[J]. 南方能源建设, 2019, 6(S1): 1-5.
YUAN H S, SUN J Y, LIU W.Application of diesel engine waste heat in island energy supply[J]. Southern energy construction, 2019, 6(S1):1-5.
[3] 郑崇伟, 李崇银. 全球海域波浪能资源评估的研究进展[J]. 海洋预报, 2016, 33(3): 76-88.
ZHENG C W, LI C Y.Review on the global ocean wave energy resource[J]. Marine forecasts, 2016, 33(3): 76-88.
[4] 王传崑. 我国海洋能资源的初步分析[J]. 海洋工程, 1984, 2(2): 58-67.
WANG C K.Primary analysis of ocean energy sources of China[J]. The ocean engineering, 1984, 2(2): 58-67.
[5] 王传崑. 我国沿岸波浪能资源状况的初步分析[J]. 东海海洋, 1984, 2(2): 32-38.
WANG C K.Primary analysis of the coastal wave energy source off China[J]. Donghai marine science, 1984, 2(2): 32-38.
[6] CARCAS M C.The OPD Pelamis WEC: Current status and onward programme (2002)[J]. International journal of ambient energy, 2003, 24(1): 21-28.
[7] MOSKVITCH K.News briefing: in Num6ers: CETO 6- Carnegie wave energy[J]. Engineering & technology, 2016, 11(4): 12-13.
[8] 董进. 南海近岛礁波浪演化数值模拟研究[D]. 大连: 大连理工大学, 2019.
DONG J.Numerical simulation of wave evolution near islands and reefs in the South China Sea[D]. Dalian: Dalian University of Technology, 2019.
[9] 丁军, 程小明, 田超, 等. 近岛礁浅水环境下浮式平台系泊系统设计研究[J]. 船舶力学, 2015, 19(7): 782-790.
DING J, CHENG X M, TIAN C, et al.Investigations on mooring system design for a floating platform in shallow water near islands and reefs[J]. Journal of ship mechanics, 2015, 19(7): 782-790.
[10] PANGALILA F V A, MARTIN J P. A method of estimating line tensions and motions of a semi-submersible based on empirical data and model basin results[C]//Offshore Technology Conference. Houston, Texas, 1969, 2: 90-96.
[11] 黄硕, 盛松伟, 游亚戈, 等. 超浅水浮式波浪能发电装置弹性系泊系统及水动力性能的数值与模型试验研究[J]. 太阳能学报, 2019, 40(3): 715-723.
HUANG S, SHENG S W, YOU Y G, et al.Numerical and model research on flex mooring system and hydrodynamic performance of floating wave energy onverter in ultra-shallow water[J]. Acta energiae solaris sinica, 2019, 40(3): 715-723.
[12] 和庆冬, 王月, 张敏. 考虑潮汐影响下浅水浮式风电结构动力响应研究[J]. 太阳能学报, 2023, 44(2): 109-115.
HE Q D, WANG Y, ZHANG M.Study on dynamic response of shallow water floating wind turbine considering tide[J]. Acta energiae solaris sinica, 2023, 44(2): 109-115.
[13] THIES P R, JOHANNING L, MCEVOY P.A novel mooring tether for peak load mitigation: Initial performance and service simulation testing[J]. International journal of marine energy, 2014, 7: 43-56.
[14] 郭小天, 张亮. 潮流发电装置弹性锚泊设计[J]. 应用科技, 2013, 40(3): 6-9.
GUO X T, ZHANG L.The elastic mooring design of tidal current generation power device[J]. Applied science and technology, 2013, 40(3): 6-9.
[15] 李辉. 漂浮式潮流电站组合系泊系统设计分析[D]. 哈尔滨: 哈尔滨工程大学, 2016.
LI H.Design and analysis of combined mooring system for floating tidal power station[D]. Harbin: Harbin Engineering University, 2016.
[16] 马勇, 李炳强, 徐颜, 等. 带有弹性索的潮流能电站系泊系统的设计及特性[J]. 船舶工程, 2017, 39(3): 60-64, 93.
MA Y, LI B Q, XU Y, et al.Design and characteristics of mooring system of tidal current energy power station with elastic cable[J]. Ship engineering, 2017, 39(3): 60-64, 93.
[17] 黄正, 聂铭, 李铭钧, 等. 三边型兆瓦级波浪能装置锚泊系统动力特性分析[J]. 太阳能学报, 2023, 44(6): 30-38.
HUANG Z, NIE M, LI M J, et al.Dynamic analysis of mooring system of trilateral type megawatt wave energy device[J]. Acta energiae solaris sinica, 2023, 44(6): 30-38.
[18] API RP ZSK, Design and analysis of stationkeeping systems for floating structures[S].
PDF(2265 KB)

Accesses

Citation

Detail

Sections
Recommended

/