PHOTOVOLTAIC HOT SPOT DETECTION AND POSITIONING METHOD BASED ON LIGHTWEIGHT YOLOv5s

Sun Hairong, Liu Yongpeng, Zhou Lihui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 282-288.

PDF(2796 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2796 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 282-288. DOI: 10.19912/j.0254-0096.tynxb.2023-1110

PHOTOVOLTAIC HOT SPOT DETECTION AND POSITIONING METHOD BASED ON LIGHTWEIGHT YOLOv5s

  • Sun Hairong1, Liu Yongpeng1,2, Zhou Lihui3
Author information +
History +

Abstract

A lightweight YOLOv5s based photovoltaic hot spot detection and localization method is proposed to address the issues of low model detection speed, complex computation, and complex model structure in current target detection technologies for detecting photovoltaic hot spot effects. Firstly, based on the YOLOv5s model, the lightweight network ShuffleNetV2 is introduced to improve the backbone network of YOLOv5s. By utilizing its design ideas of group convolution and channel shuffling, the model parameters and computational complexity are reduced while maintaining high accuracy. Secondly, introducing lightweight convolution GSConv to optimize the Neck part of YOLOv5s, utilizing its deep separable convolution combined with standard convolution to reduce computational complexity and optimize the overall model. Finally, use the dataset for validation. The results indicate that the lightweight model can improve detection speed, reduce parameter and computational complexity while ensuring high accuracy.

Key words

PV modules / feature extraction / infrared thermal imaging / image recognition / hot spot detection / YOLOv5

Cite this article

Download Citations
Sun Hairong, Liu Yongpeng, Zhou Lihui. PHOTOVOLTAIC HOT SPOT DETECTION AND POSITIONING METHOD BASED ON LIGHTWEIGHT YOLOv5s[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 282-288 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1110

References

[1] KUMARI A, SHEKHAR A, KUMAR M S.An artificial neural network-based fault detection technique for PV array[C]// 2022 IEEE International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 2022.
[2] 孙海蓉, 李号. 基于深度迁移学习的小样本光伏热斑识别方法[J]. 太阳能学报, 2022, 43(1): 406-411.
SUN H R, LI H.Photovoltaic hot spot identification method for small sample based on deep transfer learning[J]. Acta energiae solaris sinica, 2022, 43(1): 406-411.
[3] 孙海蓉, 李帆. 基于注意力机制的光伏热斑识别[J]. 太阳能学报, 2023, 44(2): 453-459.
SUN H R, LI H.Photovoltaic hot spot recognition based on attention mechanism[J]. Acta energiae solaris sinica, 2023, 44(2): 453-459.
[4] 郭梦浩, 徐红伟. 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28(11): 265-270.
GUO M H, XU H W.Hot spot defect detection based on infrared thermal image and Faster RCNN[J]. Computer systems & applications, 2019, 28(11): 265-270.
[5] 王道累, 李明山, 姚勇, 等. 改进SSD的光伏组件热斑缺陷检测方法[J]. 太阳能学报, 2023, 44(4): 420-425.
WANG D L, LI M S, YAO Y, et al.Method of hotspot detection of photovoltaic panels modules on improved SSD[J]. Acta energiae solaris sinica, 2023, 44(4): 420-425.
[6] KATYAL S, KUMAR S, SAKHUJA R, et al.Object detection in foggy conditions by fusion of saliency map and YOLO[C]// 2018 12th International Conference on Sensing Technology(ICST). Limerick, Ireland, 2018.
[7] 孙建波, 王丽杰, 麻吉辉, 等. 基于改进YOLOv5s算法的光伏组件故障检测[J]. 红外技术, 2023, 45(2): 202-208.
SUN J B, WANG L J, MA J H, et al.Photovoltaic module fault detection based on improved YOLOv5s algorithm[J]. Infrared technology, 2023, 45(2): 202-208.
[8] MA N, ZHANG X, ZHENG H T, et al.Shufflenetv2:Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV). Munich, Germany, 2018.
[9] 彭红星, 何慧君, 高宗梅, 等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报, 2022, 53(12): 290-300.
PENG H X, HE H J, GAO Z M, et al.Litchi disease and insect pests identification method based on improved ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 290-300.
[10] GAMBHIR R, BHARDWAJ S, KUMAR A, et al.Severity classification of diabetic retinopathy using shufflenet[C]// 2021 International Conference on Intelligent Technologies(CONIT), Hubli, India, 2021 .
[11] 赵军. 基于深度学习的小样本图像分类方法研究[D]. 西安: 长安大学, 2021.
ZHAO J.Research on few shot image classification method based on deep learning[D]. Xi’an: Chang’an University, 2021.
[12] LI H L, LI J, WEI H B, et al.Slim-neck by GSConv: a better design paradigm of the detector architectures for autonomous vehicles[EB/OL]. http://doi.org/10.48550/arxiv.2206.0242, ArXiv: 2206. 02424(2022).
[13] 冒国韬. 城市道路典型复杂场景下车辆检测方法研究[D]. 重庆: 重庆交通大学, 2022.
MAO G T.Research on vehicle detection method in typical complex scenes of urban road[D]. Chongqing: Chongqing Jiaotong University, 2022.
PDF(2796 KB)

Accesses

Citation

Detail

Sections
Recommended

/