COLLABORATIVE AND OPTIMAL STRATEGY OF HYDROGEN-STORAGE COUPLING SYSTEM BASED ON DUAL FUZZY CONTROL

Han Xiaojuan, Guo Siqi, Lyu Zhiheng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 718-726.

PDF(2276 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2276 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 718-726. DOI: 10.19912/j.0254-0096.tynxb.2023-1114

COLLABORATIVE AND OPTIMAL STRATEGY OF HYDROGEN-STORAGE COUPLING SYSTEM BASED ON DUAL FUZZY CONTROL

  • Han Xiaojuan, Guo Siqi, Lyu Zhiheng
Author information +
History +

Abstract

To address the issues of grid-connected wind power fluctuations and the high pressure of peak shaving on thermal power units, this paper introduces a collaborative and optimal strategy for wind-thermal-hydrogen-storage coupling systems based on multiple application scenarios. The variational mode decomposition algorithm is applied to decompose the wind power, and the grid-connected wind power is smoothed according to the dual time-scale grid volatility limits and weighted grey relation analysis. The alkaline electrolyzers consume surplus power to assist the deep peak shaving of thermal power units, and the hydrogen generated is used for smoothing wind power fluctuations scenario. Dual fuzzy control is employed to optimize the state of charge of electrochemical energy storage and to enhance the deep peak shaving ability of thermal power units. Moreover, the economics of the wind-thermal-hydrogen-storage coupling system under different application scenarios are compared. The effectiveness of this method is verified through simulation analysis of the actual operating data at wind and thermal power units in China.

Key words

hydrogen production / energy management / fuzzy control / multiple application scenarios / deep peak shaving

Cite this article

Download Citations
Han Xiaojuan, Guo Siqi, Lyu Zhiheng. COLLABORATIVE AND OPTIMAL STRATEGY OF HYDROGEN-STORAGE COUPLING SYSTEM BASED ON DUAL FUZZY CONTROL[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 718-726 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1114

References

[1] YUN P P, REN Y F, XUE Y.Energy-storage optimization strategy for reducing wind power fluctuation via Markov prediction and PSO method[J]. Energies, 2018, 11(12): 3393.
[2] REN G R, WAN J, LIU J F, et al.Characterization of wind resource in China from a new perspective[J]. Energy, 2019, 167: 994-1010.
[3] 徐国栋, 程浩忠, 马紫峰, 等. 用于缓解电网调峰压力的储能系统规划方法综述[J]. 电力自动化设备, 2017, 37(8): 3-11.
XU G D, CHENG H Z, MA Z F, et al.Overview of ESS planning methods for alleviating peak-shaving pressure of grid[J]. Electric power automation equipment, 2017, 37(8): 3-11.
[4] 和萍, 宫智杰, 靳浩然, 等. 高比例可再生能源电力系统调峰问题综述[J]. 电力建设, 2022, 43(11): 108-121.
HE P, GONG Z J, JIN H R, et al.Review of peak-shaving problem of electric power system with high proportion of renewable energy[J]. Electric power construction, 2022, 43(11): 108-121.
[5] HACATOGLU K, DINCER I, ROSEN M A.Sustainability of a wind-hydrogen energy system: assessment using a novel index and comparison to a conventional gas-fired system[J]. International journal of hydrogen energy, 2016, 41(19): 8376-8385.
[6] DAVID M, OCAMPO-MARTÍNEZ C, SÁNCHEZ-PEÑA R. Advances in alkaline water electrolyzers: a review[J]. Journal of energy storage, 2019, 23: 392-403.
[7] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[8] 赵健, 王奕凡, 谢桦, 等. 高渗透率可再生能源接入系统中储能应用综述[J]. 中国电力, 2019, 52(4): 167-177.
ZHAO J, WANG Y F, XIE H, et al.An overview of energy storage applications in power systems with high penetration renewable energy resources[J]. Electric power, 2019, 52(4): 167-177.
[9] 杨彦飞, 陈洁, 廖跃洪, 等. 基于递归模糊神经网络的风电平滑控制策略[J]. 现代电力, 2022, 39(2): 228-235.
YANG Y F, CHEN J, LIAO Y H, et al.Wind power smoothing control strategy based on recursive fuzzy neural network[J]. Modern Electric Power, 2022, 39(2): 228-235.
[10] 邓浩, 陈洁, 腾扬新, 等. 风氢耦合系统能量管理策略研究[J]. 太阳能学报, 2021, 42(1): 256-263.
DENG H, CHEN J, TENG Y X, et al.Energy management strategy of wind power coupled with hydrogen system[J]. Acta energiae solaris sinica, 2021, 42(1): 256-263.
[11] 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94.
CAI G W, CHEN C, KONG L G, et al.Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China electrotechnical society, 2017, 32(17): 84-94.
[12] 徐衍会, 徐宜佳. 平抑风电波动的混合储能容量配置及控制策略[J]. 中国电力, 2022, 55(6): 186-193.
XU Y H, XU Y J.Capacity configuration and control strategy of hybrid energy storage to smooth wind power fluctuations[J]. Electric power, 2022, 55(6): 186-193.
[13] ZHAO Z H.Improved fuzzy logic control-based energy management strategy for hybrid power system of FC/PV/battery/SC on tourist ship[J]. International journal of hydrogen energy, 2022, 47(16): 9719-9734.
[14] 李铁, 李正文, 杨俊友, 等. 计及调峰主动性的风光水火储多能系统互补协调优化调度[J]. 电网技术, 2020, 44(10): 3622-3630.
LI T, LI Z W, YANG J Y, et al.Coordination and optimal scheduling of multi-energy complementary system considering peak regulation initiative[J]. Power system technology, 2020, 44(10): 3622-3630.
[15] 刘冰, 张静, 李岱昕, 等. 储能在发电侧调峰调频服务中的应用现状和前景分析[J]. 储能科学与技术, 2016, 5(6): 909-914.
LIU B, ZHANG J, LI D X, Et al. Energy storage for peak shaving and frequency regulation in the front of meter:progress and prospect[J]. Energy storage science and technology, 2016, 5(6): 909-914.
[16] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961-3970.
LI J H, ZHANG J H, MU G, et al.Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power system technology, 2019, 43(11): 3961-3970.
[17] 朱健宇, 潘学萍, 王正风, 等. 兼顾碳减排和新能源消纳的火电机组深度调峰与复合储能协调规划[J]. 电力自动化设备, 2024, 44(1): 17-23.
ZHU J Y, PAN X P, WANG Z F, et al.Coordinated planning of thermal generator deep peak regulation and composite energy storage considering carbon emission reduction and new energy consumption[J]. Electric power automation equipment, 2024, 44(1): 17-23.
[18] 袁铁江, 高玲玉, 谢永胜, 等. 基于氢能的风-火耦合多能系统设计与综合评估[J]. 电力自动化设备, 2021, 41(10): 227-233,255.
YUAN T J, GAO L Y, XIE Y S, et al.Design and comprehensive evaluation of wind-thermal power coupling multi-energy system based on hydrogen energy[J]. Electric power automation equipment, 2021, 41(10): 227-233, 255.
[19] 曹炜, 钟厦, 王海华, 等. 制氢系统参与火电辅助调峰的容量配置优化[J]. 分布式能源, 2020, 5(2): 15-20.
CAO W, ZHONG X, WANG H H, et al.Optimal capacity allocation of hydrogen production system participating peak regulation for auxiliary with thermal power plant[J]. Distributed energy, 2020, 5(2): 15-20.
[20] 孔令国, 陈钥含, 万燕鸣, 等. 计及调峰辅助服务的风电场/群经济制氢容量计算[J]. 电工技术学报, 2023, 38(16): 4406-4420.
KONG L G, CHEN Y H, WANG Y M, et al.Calculation of economics of power-to-gas capacity for wind farms/clusters with peak regulation auxiliary service response[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4406-4420.
[21] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[22] 殷志敏, 晁勤, 王一波, 等. 波动率优于国网标准的风电场储能容量经济优化配置[J]. 可再生能源, 2016, 34(1): 86-94.
YIN Z M, CHAO Q, WANG Y B, et al.An economic optimal method for wind farm energy storage capacity with superior fluctuation rate to standard of the State Grid[J]. Renewable energy resources, 2016, 34(1): 86-94.
[23] 郑浩, 谢丽蓉, 叶林, 等. 考虑光伏双评价指标的混合储能平滑出力波动策略[J]. 电工技术学报, 2021, 36(9): 1805-1817.
ZHENG H, XIE L R, YE L, et al.Hybrid energy storage smoothing output fluctuation strategy considering photovoltaic dual evaluation indicators[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1805-1817.
[24] 崔杨, 修志坚, 刘闯, 等. 计及需求响应与火-储深度调峰定价策略的电力系统双层优化调度[J]. 中国电机工程学报, 2021, 41(13): 4403-4415.
CUI Y, XIU Z J, LIU C, et al.Dual level optimal dispatch of power system considering demand response and pricing strategy on deep peak regulation[J]. Proceedings of the CSEE, 2021, 41(13): 4403-4415.
[25] 邢晓敏, 杜钧淇, 李贻涛, 等. 海岛低碳综合能源微网优化方案设计[J]. 南方电网技术, 2023, 17(1): 3-13.
XING X M, DU J Q, LI Y T, et al.Optimization scheme design of island low-carbon integrated energy microgrid[J]. Southern power system technology, 2023, 17(1): 3-13.
[26] 王腾, 张新燕, 王亚东, 等. 基于二阶滤波的混合储能系统能量管理控制策略[J]. 太阳能学报, 2022, 43(11): 399-405.
WANG T, ZHANG X Y, WANG Y D, et al.Energy management control strategy of hybrid energy storage system based on second-order filtering[J]. Acta energiae solaris sinica, 2022, 43(11): 399-405.
[27] LI J, MA F H, TANG J T, et al.Denoising application of magnetotelluric low-frequency signal processing[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 3210334.
[28] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, speech and Signal Processing (ICASSP). Prague, Czech Republic, 2011: 4144-4147.
PDF(2276 KB)

Accesses

Citation

Detail

Sections
Recommended

/