STUDY ON PHOTOVOLTAIC PERFORMANCE OF QUASI-SINGLE CRYSTALLINE SILICON CELLS UNDER THINNING

Ma Shaobo, Li Jin, Qu Li, Ma Run, Wang Zhongliang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 170-177.

PDF(1978 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1978 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 170-177. DOI: 10.19912/j.0254-0096.tynxb.2023-1140

STUDY ON PHOTOVOLTAIC PERFORMANCE OF QUASI-SINGLE CRYSTALLINE SILICON CELLS UNDER THINNING

  • Ma Shaobo1, Li Jin2, Qu Li2, Ma Run2, Wang Zhongliang1
Author information +
History +

Abstract

Quokka2 software was used to simulate solar cells with quasi-single crystalline silicon as substrate, and the effect of silicon thickness on the conversion efficiency and power loss of quasi-single crystalline silicon solar cells with different oxygen content and bulk lifetime was studied. Compared with Czochralski monocrystalline silicon, quasi-single crystalline silicon has lower cost, more defects and lower oxygen content. By applying quasi-single crystalline silicon to passivated emitter and back contact cells (PERC) and interdigitated-back contact cells (IBC), the photovoltaic performance of quasi-single crystalline silicon wafers in different cell structures was compared. The results show that the Shockley-Read Hall (SRH) composite loss also decreases up to 1.14 mW/cm2 with the thickness of the silicon wafer dropping from 150 μm to 70 μm, but the short circuit current decreases by 0.95 mA/cm2 at the same time, and the cell conversion efficiency is still improved to some extent under the mutual influence. Under thinning, the conversion efficiency of quasi-single crystalline PERC solar cell can reach 23.04%. The conversion efficiency of quasi-single crystalline IBC solar cell can reach 23.73%.

Key words

solar cells / thickness control / numerical simulation / quasi-single crystalline silicon / power loss analysis

Cite this article

Download Citations
Ma Shaobo, Li Jin, Qu Li, Ma Run, Wang Zhongliang. STUDY ON PHOTOVOLTAIC PERFORMANCE OF QUASI-SINGLE CRYSTALLINE SILICON CELLS UNDER THINNING[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 170-177 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1140

References

[1] VDMA, International technology roadmap for photovoltaic(ITRPV), results2022, fourteenth edition, April 2023[EB/OL].https://www.vdma.org/international-technology-roadmap-photovoltaic.
[2] WOLNY F, KRAUSE A, MÜLLER M, et al. Reduced metal contamination from crucible and coating using a silicon nitride based diffusion barrier for the growth of cast quasi-single crystalline silicon ingots[J]. Journal of crystal growth, 2019, 514: 49-53.
[3] ZHANG F, YU X G, HU D L, et al.Controlling dislocation gliding and propagation in quasi-single crystalline silicon by using-oriented seeds[J]. Solar energy materials and solar cells, 2019, 193: 214-218.
[4] SONG L H, YU X G.Defect engineering in cast mono-like silicon: a review[J]. Progress in photovoltaics: research and applications, 2021, 29(3): 294-314.
[5] ZHANG W, CHEN C, JIA R, et al.Analysis of the interdigitated back contact solar cells: the n-type substrate lifetime and wafer thickness[J]. Chinese physics B, 2015, 24(10): 108801.
[6] LYU Y, ZHUANG Y F, WANG W J, et al.Towards high-efficiency industrial p-type mono-like Si PERC solar cells[J]. Solar energy materials and solar cells, 2020, 204: 110202.
[7] SAI H, UMISHIO H, MATSUI T, et al. Impact of silicon wafer thickness on photovoltaic performance of crystalline silicon heterojunction solar cells[J]. Japanese journal of applied physics, 2018, 57(8S3): 08RB10.
[8] LIU C F, CHEN D M, CHEN Y F, et al.Industrial TOPCon solar cells on n-type quasi-mono Si wafers with efficiencies above 23%[J]. Solar energy materials and solar cells, 2020, 215: 110690.
[9] KASHYAP S, SHRIVASTAV N, PANDEY R, et al.Double POLO carrier selective contact based PERC solar cell for 25.5% conversion efficiency: a simulation study[J]. ECS transactions, 2022, 107(1): 6365-6370.
[10] BUDHRAJA V, DEVAYAJANAM S, BASNYAT P.Simulation results: optimization of contact ratio for interdigitated back-contact solar cells[J]. International journal of photoenergy, 2017, 2017: 7818914.
[11] CHEN Y Z, YANG Y, XU G C, et al.Optimization of micron size passivated contact and doping level for high efficiency interdigitated back contact solar cells[J]. Solar energy, 2019, 178: 308-313.
[12] MCINTOSH K R, BAKER-FINCH S C. OPAL 2: rapid optical simulation of silicon solar cells[C]//2012 38th IEEE Photovoltaic Specialists Conference. Austin, TX, USA, 2012: 265-271.
[13] CHEN Y Z, YANG Y, MARMON J K, et al.Independent Al2O3/SiNx: H and SiO2/SiNx: H passivation of p and n silicon surfaces for high-performance interdigitated back contact solar cells[J]. IEEE journal of photovoltaics, 2017, 7(1): 51-57.
[14] HOFSTETTER J, FRASER R, JONCZYK R, et al.Effective lifetime approaching 1 ms in high-resistivity p-type kerfless multi-crystalline wafers[J]. Solar RRL, 2019, 3(4): 1900009.
[15] FELL A.A free and fast three-dimensional/two-dimensional solar cell simulator featuring conductive boundary and quasi-neutrality approximations[J]. IEEE transactions on electron devices, 2013, 60(2): 733-738.
[16] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版社, 2017: 37-186.
LIU E K, ZHU B S, LUO J S.Physics of semiconductors[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2017: 37-186.
[17] ALTERMATT P P.Models for numerical device simulations of crystalline silicon solar cells: a review[J]. Journal of computational electronics, 2011, 10(3): 314-330.
[18] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[19] BOWDEN S, YELUNDUR V, ROHATGI A.Implied-Voc and Suns-Voc measurements in multicrystalline solar cells[C]//Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference. New Orleans, LA, USA, 2002: 371-374.
[20] KLUSKA S, GRANEK F, RÜDIGER M, et al. Modeling and optimization study of industrial n-type high-efficiency back-contact back-junction silicon solar cells[J]. Solar energy materials and solar cells, 2010, 94(3): 568-577.
[21] 任丽丽, 陈克勤, 陈诚, 等. 双面p型PERC太阳电池的紫外衰减特性研究及电池紫外稳定性优化[J]. 太阳能学报, 2022, 43(5): 167-172.
REN L L, CHEN K Q, CHEN C, et al.Research on decay characteristics of bifacial p-type PERC solar cell and optimization of ultraviolet irradiating stability[J]. Acta energiae solaris sinica, 2022, 43(5): 167-172.
[22] 周肃, 贾佳, 王丽婷, 等. 光热退火对多晶PERC太阳电池光致衰减效应的影响[J]. 太阳能学报, 2021, 42(9): 170-175.
ZHOU S, JIA J, WANG L T, et al.Effect of photothermal annealing on LETID of polycrystalline PERC solar cells[J]. Acta energiae solaris sinica, 2021, 42(9): 170-175.
[23] BRENDEL R, DREISSIGACKER S, HARDER N P, et al.Theory of analyzing free energy losses in solar cells[J]. Applied physics letters, 2008, 93(17): 173503.
[24] 王岩岩, 钱敏, 蒋晓慧, 等. 超薄晶硅太阳电池表面介质纳米结构减反及陷光机理研究[J]. 太阳能学报, 2023, 44(7): 135-140.
WANG Y Y, QIAN M, JIANG X H, et al.Research on antireflection and light trapping properties for dielectric nanostructures on ultrathin crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2023, 44(7): 135-140.
[25] ZENG Y H, YANG Q, WAN Y M, et al.Numerical exploration for structure design and free-energy loss analysis of the high-efficiency polysilicon passivated-contact p-type silicon solar cell[J]. Solar energy, 2019, 178: 249-256.
PDF(1978 KB)

Accesses

Citation

Detail

Sections
Recommended

/