STUDY ON THERMAL AND HYDRAULIC PERFORMANCE OF THIRD GENERATION SOLAR THERMAL POWER HEAT EXCHANGER

Wang Yanquan, Lu Yuanwei, Gao Qi, Li Feng, Ma Yancheng, Wu Yuting

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 190-196.

PDF(3135 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3135 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 190-196. DOI: 10.19912/j.0254-0096.tynxb.2023-1156

STUDY ON THERMAL AND HYDRAULIC PERFORMANCE OF THIRD GENERATION SOLAR THERMAL POWER HEAT EXCHANGER

  • Wang Yanquan, Lu Yuanwei, Gao Qi, Li Feng, Ma Yancheng, Wu Yuting
Author information +
History +

Abstract

This article uses numerical simulation methods to investigate the thermal hydraulic laws of the flow channels in a molten salt and sCO2 printed circuit board heat exchanger (PCHE) using binary eutectic salts MgCl2-KCl and sCO2 as heat transfer media. In the airfoil channel, due to the collision of the flowing working fluid at the end of the fins, the minimum flow velocity generally occurs at the end of the fins. Due to the influence of flow velocity, the minimum pressure usually occurs at the thickest part of the fins. Nu and Δp in both straight and wing channels increase with the increase of Re, while f decreases with the increase of Re. The heat transfer efficiency in the straight channel and wing channel has been improved by 53.3% and 56.9%, respectively. By fitting, a heat transfer and friction correlation equation was established for molten salt and sCO2 as working fluids in printed circuit board heat exchangers.

Key words

numerical simulation / molten salt / sCO2 / printed circuit board heat exchanger / airfoil channel / straight channel

Cite this article

Download Citations
Wang Yanquan, Lu Yuanwei, Gao Qi, Li Feng, Ma Yancheng, Wu Yuting. STUDY ON THERMAL AND HYDRAULIC PERFORMANCE OF THIRD GENERATION SOLAR THERMAL POWER HEAT EXCHANGER[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 190-196 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1156

References

[1] 韩伟, 崔凯平, 刘欣, 等. 太阳能热发电站熔盐储罐首次充盐策略研究[J]. 太阳能学报, 2022, 43(3): 282-287.
HAN W, CUI K P, LIU X, et al.Research on first salt filling strategy for storage tanks of CSP plant[J]. Acta energiae solaris sinica, 2022, 43(3): 282-287.
[2] WANG W Q, QIU Y, HE Y L, et al.Experimental study on the heat transfer performance of a molten-salt printed circuit heat exchanger with airfoil fins for concentrating solar power[J]. International journal of heat and mass transfer, 2019, 135: 837-846.
[3] RUAN B H, LIN W S, LI W Z, et al.Numerical simulation on heat transfer and flow of supercritical methane in printed circuit heat exchangers[J]. Cryogenics, 2022, 126: 103541.
[4] 李彦洲. 板式换热器板片换热和流动特性的研究[D]. 长春: 长春工业大学, 2014.
LI Y Z.Study on heat transfer and flow characteristics of plate heat exchanger[D]. Changchun: Changchun University of Technology, 2014.
[5] 杨熠辉, 余强, 王志峰, 等. sCO2太阳能热发电流化床固体颗粒/sCO2换热器建模与仿真研究[J]. 太阳能学报, 2022, 43(8): 195-203.
YANG Y H, YU Q, WANG Z F, et al.Modeling and simulation of fluidized bed solid particle/sCO2 heat exchanger of sCO2 solar thermal power plant[J]. Acta energiae solaris sinica, 2022, 43(8): 195-203.
[6] 刘晨, 李启明, 邹杨, 等. 翼型翅片PCHE的结构参数优化与流动传热的数值模拟[J]. 核技术, 2021, 44(11): 84-92.
LIU C, LI Q M, ZOU Y, et al.Optimization of structural parameters and thermal-hydraulic numerical simulation of printed circuit heat exchanger with airfoil fins[J]. Nuclear techniques, 2021, 44(11): 84-92.
[7] 张虎忠. 超临界CO2印刷电路板换热器性能研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
ZHANG H Z.Study on performance of heat exchanger for supercritical CO2 printed circuit board[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020.
[8] 贾丹丹. 印刷板式换热器强化换热理论分析与实验研究[D]. 镇江: 江苏科技大学, 2017.
JIA D D.Theoretical analysis and experimental study on heat transfer enhancement of printed plate heat exchanger[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017.
[9] 安风霞, 杨玉, 吴帅帅, 等. 印刷电路板换热器芯体尺寸多目标优化研究[J]. 电力科技与环保, 2023, 39(4): 345-352.
AN F X, YANG Y, WU S S, et al.Multi-objective optimization of the core size of a printed circuit heat exchanger[J]. Electric power technology and environmental protection, 2023, 39(4): 345-352.
[10] CUI X Y, GUO J F, HUAI X L, et al.Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International journal of heat and mass transfer, 2018, 121: 354-366.
[11] MA T, XIN F, LI L, et al.Effect of fin-end wall fillet on thermal hydraulic performance of airfoil printed circuit heat exchanger[J]. Applied thermal engineering, 2015, 89: 1087-1095.
[12] 孔庆龙, 鹿院卫, 于强, 等. 熔盐单罐双盘管释热换热器布置方式优选[J]. 太阳能学报, 2022, 43(8): 209-215.
KONG Q L, LU Y W, YU Q, et al.Optimum layout of molten salt single tank double coil heat releasing heat exchanger[J]. Acta energiae solaris sinica, 2022, 43(8): 209-215.
[13] FU Q M, DING J, LAO J W, et al.Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage[J]. Applied energy, 2019, 247: 594-604.
[14] SHI H Y, LI M J, WANG W Q, et al.Heat transfer and friction of molten salt and supercritical CO2 flowing in an airfoil channel of a printed circuit heat exchanger[J]. International journal of heat and mass transfer, 2020, 150: 119006.
[15] 尤学刚, 刘新宇, 曾冬, 等. 国产印刷电路板式换热器的首次工业应用研究[J]. 石油机械, 2022, 50(2): 46-52.
YOU X G, LIU X Y, ZENG D, et al.First industrial application research on domestic printed circuit heat exchanger[J]. China petroleum machinery, 2022, 50(2): 46-52.
PDF(3135 KB)

Accesses

Citation

Detail

Sections
Recommended

/