JOINT CORRELATION ANALYSIS OF WIND AND WAVE ENERGY IN TAIWAN STRAIT CONSIDERING OCEAN MOTION UNDER TYPHOON ENVIRONMENT

Ding Siyin, Ke Shitang, Zhang Chunwei, Chen Mingzhu, Yun Yiwen, Ren Hehe

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 617-626.

PDF(7856 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(7856 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 617-626. DOI: 10.19912/j.0254-0096.tynxb.2023-1174

JOINT CORRELATION ANALYSIS OF WIND AND WAVE ENERGY IN TAIWAN STRAIT CONSIDERING OCEAN MOTION UNDER TYPHOON ENVIRONMENT

  • Ding Siyin1,2, Ke Shitang1,2, Zhang Chunwei1,2, Chen Mingzhu1,2, Yun Yiwen1, Ren Hehe1,2
Author information +
History +

Abstract

Given the abundant wind and wave energy resources along the southeast coast of China, considering the coupling between wind, waves and currents in the marine environment, and proposing a reasonable method for analyze the interaction between wind energy and wave energy in typhoon conditions is particularly important. Based on the secondary development of MCT coupler, the WRF-SWAN-FVCOM simulation method considering ocean movement during the whole process of typhoon transit is proposed in this paper, and the real-time coupling simulation of wind-wave-current during the whole process of Typhoon "Meranti" transit is reproduced. The spatio-temporal distribution, difference and variability of wind energy and wave energy in the Taiwan Strait during typhoon and typhoon-ocean movement coupling are compared and analyzed, and the influence of ocean movement on the joint correlation of wind energy and wave energy in the Taiwan Strait is revealed. The results show that considering ocean motion, the simulation results are more accurate, and the accuracy of maximum stable wind speed is improved by 11.5%. Considering the ocean movement, the wind and wave can be more stable, and the wind power density increases by 34.19% and wave power density increases by 42.27%. Considering that the ocean movement improves the joint correlation of wind and wave in the Taiwan Strait region, the wind and wave combined power generation should be fully carried out before the typhoon, and the stability of wave energy should be fully exerted after the typhoon.

Key words

wind power / wave power / correlation / typhoon / ocean movement

Cite this article

Download Citations
Ding Siyin, Ke Shitang, Zhang Chunwei, Chen Mingzhu, Yun Yiwen, Ren Hehe. JOINT CORRELATION ANALYSIS OF WIND AND WAVE ENERGY IN TAIWAN STRAIT CONSIDERING OCEAN MOTION UNDER TYPHOON ENVIRONMENT[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 617-626 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1174

References

[1] 余建星, 傅一钦, 余杨, 等. 渤海地区双参数风资源评估方法研究[J]. 太阳能学报, 2021, 42(7): 325-332.
YU J X, FU Y Q, YU Y, et al.Research on two-parameters wind resource assessment methods in Bohai Sea[J]. Acta energiae solaris sinica, 2021, 42(7): 325-332.
[2] 黄权开, 卢成志, 刘永生, 等. 基于WT与WindPRO的风场风能评估与微观选址[J]. 人民长江, 2021, 52(6): 88-94.
HUANG Q K, LU C Z, LIU Y S, et al.Wind energy assessment and micrositing on wind farm based on WT and WindPRO[J]. Yangtze river, 2021, 52(6): 88-94.
[3] 王硕, 柯世堂, 赵永发, 等. 台风-浪-流耦合作用下海上风力机基础结构水动力特性分析[J]. 太阳能学报, 2022, 43(10): 218-228.
WANG S, KE S T, ZHAO Y F, et al.Research on hydrodynamics of foundation structure of offshore wind turbine under typhoon-wave-current coupling[J]. Acta energiae solaris sinica, 2022, 43(10): 218-228.
[4] 易侃, 张子良, 张皓, 等. 海上风能资源评估数值模拟技术现状及发展趋势[J]. 分布式能源, 2021, 6(1): 1-6.
YI K, ZHANG Z L, ZHANG H, et al.Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed energy, 2021, 6(1): 1-6.
[5] 武贺, 方舣洲, 张松, 等. 南海岛礁海域波浪能资源分析及总量评估[J]. 太阳能学报, 2022, 43(9): 416-423.
WU H, FANG Y Z, ZHANG S, et al.Wave energy characterization and potential estimation for islands of South China sea[J]. Acta energiae solaris sinica, 2022, 43(9): 416-423.
[6] CHÁVEZ V, BÁRCENAS J F, MARTÍNEZ M L, et al. Potential sites for the use of ocean energy in the Mexican Caribbean[J]. Energy sources, part B: economics, planning, and policy, 2023, 18(1): 2160524.
[7] ZHENG C W, XIAO Z N, PENG Y H, et al.Rezoning global offshore wind energy resources[J]. Renewable energy, 2018, 129: 1-11.
[8] 郑崇伟, 苏勤, 刘铁军. 1988—2010年中国海域波浪能资源模拟及优势区域划分[J]. 海洋学报, 2013, 35(3): 104-111.
ZHENG C W, SU Q, LIU T J.Wave energy resources assessment and dominant area evaluation in the China sea from 1988 to 2010[J]. Acta oceanologica sinica, 2013, 35(3): 104-111.
[9] 郑崇伟, 裴顺强, 李伟. “21世纪海上丝绸之路”: 未来40年波浪能长期预估[J]. 哈尔滨工程大学学报, 2020, 41(7): 958-965.
ZHENG C W, PEI S Q, LI W.Projection of wave energy resource for the next 40 years in the 21st-century Maritime Silk Road[J]. Journal of Harbin Engineering University, 2020, 41(7): 958-965.
[10] COSTOYA X, DECASTRO M, CARVALHO D, et al.Climate change impacts on the future offshore wind energy resource in China[J]. Renewable energy, 2021, 175: 731-747.
[11] COSTOYA X, DECASTRO M, CARVALHO D, et al.On the suitability of offshore wind energy resource in the United States of America for the 21st century[J]. Applied energy, 2020, 262: 114537.
[12] 郑崇伟. “21世纪海上丝绸之路” 风能资源时空特征数据集[J]. 中国科学数据, 2020, 5(4): 106-119.
ZHENG C W.Temporal-spatial characteristics dataset of offshore wind energy resource for the 21st Century Maritime Silk Road[J]. China scientific data, 2020, 5(4): 106-119.
[13] 王春晓, 于华明, 李松霖, 等. 基于海浪再分析数据的波浪能资源分析[J]. 太阳能学报, 2022, 43(9): 430-436.
WANG C X, YU H M, LI S L, et al.Wave energy resource valuation based on sea wave reanalysis data[J]. Acta energiae solaris sinica, 2022, 43(9): 430-436.
[14] 张艺三, 胡松, 王芳. 计及恶劣天气约束的海上风能波浪能资源分布研究[J]. 太阳能学报, 2022, 43(12): 200-205.
ZHANG Y S, HU S, WANG F.Distribution of offshore wind and wave energy resources considering severe weather constraints[J]. Acta energiae solaris sinica, 2022, 43(12): 200-205.
[15] 黄俊辉, 孙文涛, 李辰, 等. 基于WRF模式的海上风能资源特性分析及评价[J]. 太阳能学报, 2021, 42(7): 278-283.
HUANG J H, SUN W T, LI C, et al.Analysis and evaluation of offshore wind energy resources characteristics based on WRF model[J]. Acta energiae solaris sinica, 2021, 42(7): 278-283.
[16] 姜波, 丁杰, 武贺, 等. 渤海、黄海、东海波浪能资源评估[J]. 太阳能学报, 2017, 38(6): 1711-1716.
JIANG B, DING J, WU H, et al.Wave energy resource assessment along Bohai Sea, Yellow Sea and East China Sea[J]. Acta energiae solaris sinica, 2017, 38(6): 1711-1716.
[17] LARSÉN X G, DU J T, BOLAÑOS R, et al. Estimation of offshore extreme wind from wind-wave coupled modeling[J]. Wind energy, 2019, 22(8): 1043-1057.
[18] LAPRISE R.The Euler equations of motion with hydrostatic pressure as an independent variable[J]. Monthly weather review, 1992, 120(1): 197-207.
[19] BOOIJ N, HAAGSMA I J G, HILTHUIJSEN L H, et al. SWAN user manuals, SWAN cycle Ⅲ version 40.81[R]. Delft University of Technolog, 2011.
[20] 郑沛楠, 宋军, 张芳苒, 等. 常用海洋数值模式简介[J]. 海洋预报, 2008, 25(4): 108-120.
ZHENG P N, SONG J, ZHANG F R, et al.Common instruction of some ogcm[J]. Marine forecasts, 2008, 25(4): 108-120.
[21] CHEN T Q, ZHANG Q H, WU Y S, et al.Development of a wave-current model through coupling of FVCOM and SWAN[J]. Ocean engineering, 2018, 164: 443-454.
[22] JAPAN METEOROLOGICAL AGENCY.RSMC best track data (Text) [DB/OL]. http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html
[23] 中国气象局热带气旋研究中心[DB/OL]. https://tcdata.typhoon.org.cn.
Cyclone Research Center of China Meteorological Administration[DB/OL]. https://tcdata.typhoon.org.cn.
[24] 国家科技资源共享服务平台—国家海洋科学数据中心[DB/OL]. http://mds.nmdis.org.cn.
National Marine Data Center[DB/OL]. http://mds.nmdis.org.cn.
[25] 员亦雯, 柯世堂, 王硕, 等. 海洋运动对台风过境全过程水平风速特性的影响[J]. 空气动力学学报, 2021, 39(4): 153-161.
YUN Y W, KE S T, WANG S, et al.Effects of ocean movement on the horizontal wind speed characteristics throughout a typhoon landing process[J]. Acta aerodynamica sinica, 2021, 39(4): 153-161.
PDF(7856 KB)

Accesses

Citation

Detail

Sections
Recommended

/