STOCHASTIC OPTIMAL DISPATCH OF COMBINED HEAT AND POWER IN VIRTUAL POWER PLANT WITH CARBON CAPTURE UNITS

Yuan Guili, Zhang Rui, Zhao Xun, Zhang Guobin, Li Hongbo, Hang Chenhui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 627-636.

PDF(1342 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1342 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 627-636. DOI: 10.19912/j.0254-0096.tynxb.2023-1177

STOCHASTIC OPTIMAL DISPATCH OF COMBINED HEAT AND POWER IN VIRTUAL POWER PLANT WITH CARBON CAPTURE UNITS

  • Yuan Guili1, Zhang Rui1, Zhao Xun1, Zhang Guobin2, Li Hongbo3, Hang Chenhui3
Author information +
History +

Abstract

In order to cope with the randomness, intermittency and uncertainty of wind power generation in the “Three North” region, particularly during periods of high wind power generation, the operation mode of coal-fired Cogeneration units that “determine power by heat”is insufficient for flexible adjustment. For this reason, the Latin hypercube sampling method is used to simulate the next day's wind and power output scenario, determine the spinning reserve based on a certain confidence level, and optimize the rotating reserve capacity of virtual power plant by providing power reserve through carbon capture equipment. A day-ahead stochastic optimal scheduling model of combined heat and power of virtual power plant containing carbon capture thermal power units is established, and the model is solved by using quadratic interpolation method and adaptive genetic algorithm. The simulation shows that the auxiliary power reserve of carbon capture equipment can balance the reserve of rotating reserve and low-carbon operation of virtual power plant, reduce wind and solar curtailment, reduce the cost of rotating reserve, and realize safe and low-carbon economy operation of power system.

Key words

combined heat and power / spinning reserve / virtual power plant / Latin hypercube sampling / uncertainty

Cite this article

Download Citations
Yuan Guili, Zhang Rui, Zhao Xun, Zhang Guobin, Li Hongbo, Hang Chenhui. STOCHASTIC OPTIMAL DISPATCH OF COMBINED HEAT AND POWER IN VIRTUAL POWER PLANT WITH CARBON CAPTURE UNITS[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 627-636 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1177

References

[1] 袁桂丽, 贾新潮, 陈少梁, 等. 虚拟电厂源-荷协调多目标优化调度[J]. 太阳能学报, 2021, 42(5): 105-112.
YUAN G L, JIA X C, CHEN S L, et al.Multiobjective optimal dispatch considering source-load coordination for virtual power plant[J]. Acta energiae solaris sinica, 2021, 42(5): 105-112.
[2] 葛延峰, 苏安龙, 傅予, 等. 电热联合系统的多级协调调度策略[J]. 电子设计工程, 2019, 27(4): 103-108.
GE Y F, SU A L, FU Y, et al.Multi level coordinated scheduling strategy for electric heating combined system[J]. Electronic design engineering, 2019, 27(4): 103-108.
[3] 胡明. 推动能源耦合发展突破行业用能壁垒[N]. 中国能源报, 2020-12-14(4).
HU M. Promote energy coupling development and break through industry energy barriers[N]. China energy news, 2020-12-14 (4).
[4] 王庆华. 火力发电企业碳排放成本核算研究[J]. 低碳世界, 2019, 9(8): 142-143.
WANG Q H.Research on carbon emission cost accounting of thermal power generation enterprises[J]. Low carbon world, 2019, 9(8): 142-143.
[5] 陈继明, 徐乾, 李勇, 等. 计及源荷不确定性和碳捕集虚拟电厂的电-气互联系统优化调度[J]. 太阳能学报, 2023, 44(10): 9-18.
CHEN J M, XU Q, LI Y, et al.Optimal dispatch of electricity-natural gas interconnection system considering source-load uncertainty and virtual power plant with carbon capture[J]. Acta energiae solaris sinica, 2023, 44(10): 9-18.
[6] LUCQUIAUD M, CHALMERS H, GIBBINS J.Potential for flexible operation of pulverised coal power plants with CO2 capture[J]. Energy materials, 2007, 2(3): 175-180.
[7] LOU S H, LU S Y, WU Y W, et al.Optimizing spinning reserve requirement of power system with carbon capture plants[J]. IEEE transactions on power systems, 2015, 30(2): 1056-1063.
[8] 崔杨, 曾鹏, 王铮, 等. 计及电价型需求侧响应含碳捕集设备的电-气-热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45(2): 447-461.
CUI Y, ZENG P, WANG Z, et al.Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power system technology, 2021, 45(2): 447-461.
[9] METZ B, DAVIDSON O, CONINCK H D, et al.IPCC special report on carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press for the Intergovernmental Panel on Climate Change, 2005.
[10] CHEN Q X, KANG C Q, XIA Q.Modeling flexible operation mechanism of CO2 capture power plant and its effects on power-system operation[J]. IEEE transactions on energy conversion, 2010, 25(3): 853-861.
[11] COHEN S M, ROCHELLE G T, WEBBER M E.Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices[J]. Energy procedia, 2011, 4: 2604-2611.
[12] CHALMERS H, GIBBINS J.Potential for synergy between renewables and carbon capture and storage[C]//Proc. 29th IAEE Int. Conf. Berlin, Germany, 2006.
[13] 袁桂丽, 贾新潮, 房方, 等. 虚拟电厂源荷双侧热电联合随机优化调度[J]. 电网技术, 2020, 44(8): 2932-2940.
YUAN G L, JIA X C, FANG F, et al.Joint stochastic optimal scheduling of heat and power considering source and load sides of virtual power plant[J]. Power system technology, 2020, 44(8): 2932-2940.
[14] 刘兴宇, 温步瀛, 江岳文. 基于条件风险价值的含风电电力系统旋转备用效益研究[J]. 电工技术学报, 2017, 32(9): 169-178.
LIU X Y, WEN B Y, JIANG Y W.Study on the benefit from spinning reserve in wind power integrated power system based on conditional value at risk[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 169-178.
[15] BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A, LLOMBART A. Statistical analysis of wind power forecast error[J]. IEEE transactions on power systems, 2008, 23(3): 983-991.
[16] YU H, CHUNG C Y, WONG K P, et al.Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition[J]. IEEE transactions on power systems, 2009, 24(2): 661-667.
[17] 仉梦林, 胡志坚, 王小飞, 等. 基于动态场景集和需求响应的二阶段随机规划调度模型[J]. 电力系统自动化, 2017, 41(11): 68-76.
ZHANG M L, HU Z J, WANG X F, et al.Two-stage stochastic programming scheduling model based on dynamic scenario sets and demand response[J]. Automation of electric power systems, 2017, 41(11): 68-76.
[18] ZHANG X P, ZHANG Y Z.Environment-friendly and economical scheduling optimization for integrated energy system considering power-to-gas technology and carbon capture power plant[J]. Journal of cleaner production, 2020, 276: 123348.
[19] 袁桂丽, 王琳博, 王宝源. 基于虚拟电厂“热电解耦” 的负荷优化调度及经济效益分析[J]. 中国电机工程学报, 2017, 37(17): 4974-4985.
YUAN G L, WANG L B, WANG B Y.Optimal dispatch of heat-power load and economy benefit analysis based on decoupling of heat and power of virtual power plant[J]. Proceedings of the CSEE, 2017, 37(17): 4974-4985.
[20] 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42(12): 4441-4448.
YUAN G L, LIU H Q, YU J F, et al.Optimal scheduling of combined heat and power in virtual power plants with carbon capture thermal power units[J]. Proceedings of the CSEE, 2022, 42(12): 4441-4448.
PDF(1342 KB)

Accesses

Citation

Detail

Sections
Recommended

/