IMPROVED GREY WOLF OPTIMIZATION ALGORITHM FOR HELIOSTATS FIELD LAYOUT

Xie Qiyue, Liu Guangshuai, Liu Yao, Shen Zhongli, Fu Qiang, Zhou Yucai

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 394-400.

PDF(2087 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2087 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 394-400. DOI: 10.19912/j.0254-0096.tynxb.2023-1211

IMPROVED GREY WOLF OPTIMIZATION ALGORITHM FOR HELIOSTATS FIELD LAYOUT

  • Xie Qiyue, Liu Guangshuai, Liu Yao, Shen Zhongli, Fu Qiang, Zhou Yucai
Author information +
History +

Abstract

A method for optimizing the layout of the heliostat field in tower solar thermal power plants based on the improved gray wolf optimization algorithm is proposed. This improved algorithm combines the gray wolf optimization algorithm with memory, local search and evolutionary operators to enhance the global nature and search accuracy of the algorithm. Taking the Gemasolar solar thermal power plant in Spain as an example to verify the effectiveness of the algorithm, after using the improved gray wolf optimization algorithm to optimize the layout of the heliostat field in the power station, the optical efficiency of the heliostat field increased by 5%, which proves that the heliostat field layout has a higher average annual optical efficiency after being optimized by the improved gray wolf algorithm.

Key words

heliostats / concentrated solar power / optimization / improved grey wolf algorithm / heliostat field layout / optical efficiency

Cite this article

Download Citations
Xie Qiyue, Liu Guangshuai, Liu Yao, Shen Zhongli, Fu Qiang, Zhou Yucai. IMPROVED GREY WOLF OPTIMIZATION ALGORITHM FOR HELIOSTATS FIELD LAYOUT[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 394-400 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1211

References

[1] AL-SAKAF O H. Application possibilities of solar thermal power plants in Arab countries[J]. Renewable energy, 1998, 14(1): 1-9.
[2] DENG L B, WU Y R, GUO S, et al.Rose pattern for heliostat field optimization with a dynamic speciation-based mutation differential evolution[J]. International journal of energy research, 2020, 44(3): 1951-1970.
[3] LI C, ZHAI R R, LIU H T, et al.Optimization of a heliostat field layout using hybrid PSO-GA algorithm[J]. Applied thermal engineering, 2018, 128: 33-41.
[4] RIZVI A A, YANG D, KHAN T A.Optimization of biomimetic heliostat field using heuristic optimization algorithms[J]. Knowledge-based systems, 2022, 258: 1-14.
[5] ATIF M, AL-SULAIMAN F A. Development of a mathematical model for optimizing a heliostat field layout using differential evolution method[J]. International journal of energy research, 2015, 39(9): 1241-1255.
[6] ATIF M, AL-SULAIMAN F A. Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm[J]. Energy conversion and management, 2015, 95: 1-9.
[7] XIE Q Y, GUO Z Q, LIU D F, et al.Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm[J]. Renewable energy, 2021, 176: 447-458.
[8] BELAID A, FILALI A, HASSANI S, et al.Heliostat field optimization and comparisons between biomimetic spiral and radial-staggered layouts for different heliostat shapes[J]. Solar energy, 2022, 238: 162-177.
[9] 高博, 刘建兴, 孙浩, 等. 基于自适应引力搜索算法的定日镜场优化布置[J]. 太阳能学报, 2022, 43(10): 119-125.
GAO B, LIU J X, SUN H, et al.Optimization of a heliostat field layout using adaptive gravity search algorithm[J]. Acta energiae solaris sinica, 2022, 43(10): 119-125.
[10] COLLADO F J, GUALLAR J.Campo: generation of regular heliostat fields[J]. Renewable energy, 2012, 46: 49-59.
[11] 张茂龙, 卫慧敏, 杜小泽, 等. 塔式太阳能镜场阴影与遮挡效率的改进算法[J]. 太阳能学报, 2016, 37(8): 1998-2003.
ZHANG M L, WEI H M, DU X Z, et al.Modified algorithm of shadow and blocking efficiency for heliostat field of solar power tower[J]. Acta energiae solaris sinica, 2016, 37(8): 1998-2003.
[12] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. Hoboken: Wiley, 2013.
[13] SCHMITZ M, SCHWARZBÖZL P, BUCK R, et al. Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators[J]. Solar energy, 2006, 80(1): 111-120.
[14] SCHWARZBÖZL P, PITZ-PAAL R, SCHMITZ M. Visual HFLCAL-a software tool for layout and optimisation of heliostat fields[C]//Solar PACES, Berlin, Germany, 2009.
[15] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[16] EL-FERGANY A A, HASANIEN H M. Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms[J]. Electric power components and systems, 2015, 43(13): 1548-1559.
[17] MIRJALILI S.How effective is the Grey Wolf optimizer in training multi-layer perceptrons[J]. Applied intelligence, 2015, 43(1): 150-161.
[18] TU Q, CHEN X C, LIU X C.Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection[J]. IEEE access, 2019, 7: 78012-78028.
[19] COLLADO F J, GUALLAR J.A review of optimized design layouts for solar power tower plants with campo code[J]. Renewable and sustainable energy reviews, 2013, 20: 142-154.
[20] COLLADO F J.Quick evaluation of the annual heliostat field efficiency[J]. Solar energy, 2008, 82(4): 379-384.
PDF(2087 KB)

Accesses

Citation

Detail

Sections
Recommended

/