RESEARCH ON EFFECT AND MECHANISM OF V-GROOVE STRUCTURE ON BLADE AERODYNAMIC NOISE

Wang Zhi, Wang Zijing, Wang Heming, He Jianing, Sun Rui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 496-505.

PDF(5068 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5068 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 496-505. DOI: 10.19912/j.0254-0096.tynxb.2023-1223

RESEARCH ON EFFECT AND MECHANISM OF V-GROOVE STRUCTURE ON BLADE AERODYNAMIC NOISE

  • Wang Zhi, Wang Zijing, Wang Heming, He Jianing, Sun Rui
Author information +
History +

Abstract

In order to reduce the noise pollution of wind turbine, the influence of the position, size and number of V-grooves on the sound pressure level directivity and noise spectrum characteristics was studied. By analyzing the flow direction and vorticity distribution on the airfoil surface, the noise reduction mechanism of V-groove structure is studied. The results show that the aerodynamic noise of the blade can be effectively reduced by arranging V-groove on the suction surface of the airfoil, and the influence of different V-groove parameters is different. When the groove is located at the leading edge and s=h=0.10 mm and n=50s=Groove spacing, h=Groove height, n=Groove number), the noise reduction effect is the best, and the sound pressure level is reduced by 5.2-11.0 dB, and the influence on the high frequency sound pressure level is obvious; The V-groove structure on the blade surface can reduce the kinetic energy dissipation near the wall, promote the original flow of fluid, delay the occurrence of boundary layer separation, and also affect the development of vortex at the boundary layer separation and the air fluctuating pressure at the blade wake. In addition, the change of time-averaged vorticity in the flow field promotes the attenuation of sound source by sound pressure fluctuation radiation, thus achieving the purpose of reducing aerodynamic noise of wind turbine blades.

Key words

wind turbine blades / aeroacoustics / V-groove / large eddy simulation / vortex structure

Cite this article

Download Citations
Wang Zhi, Wang Zijing, Wang Heming, He Jianing, Sun Rui. RESEARCH ON EFFECT AND MECHANISM OF V-GROOVE STRUCTURE ON BLADE AERODYNAMIC NOISE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 496-505 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1223

References

[1] 司海青, 王同光. 风力机噪声的预测方法研究[J]. 空气动力学学报, 2011, 29(6): 801-804.
SI H Q, WANG T G.Predicting method of aerodynamic noise from wind turbine[J]. Acta aerodynamica sinica, 2011, 29(6): 801-804.
[2] 王志, 王赫鸣, 王紫荆, 等. 通用飞机螺旋桨翼型多目标优化[J]. 航空动力学报, 2023, 39(9): 120-130.
WANG Z, WANG H M, WANG Z J, et al.Multi-objective optimization of low noise propeller airfoil for general aviation aircraft[J]. Journal of aerospace power, 2023, 39(9): 120-130.
[3] 王晋军. 沟槽面湍流减阻研究综述[J]. 北京航空航天大学学报, 1998, 24(1): 35-38.
WANG J J.Reviews and prospects in turbulent drag reduction over riblets surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1):35-38.
[4] 徐学昊, 叶舟, 韩彦军, 等. 前缘小翼对翼型气动及噪声特性影响[J]. 热能动力工程, 2021, 36(1): 127-135.
XU X H, YE Z, HAN Y J, et al.Influence of leading edge winglet on aerodynamic and noise characteristics of airfoil[J]. Journal of engineering for thermal energy and power, 2021, 36(1): 127-135.
[5] 岳敏楠, 李春, 郝文星, 等. 气动弹片对翼型气动及噪声特性的影响[J]. 中国机械工程, 2019, 30(12): 1409-1416.
YUE M N, LI C, HAO W X, et al.Effects of flap on aerodynamic and noise characteristics of airfoils[J]. China mechanical engineering, 2019, 30(12): 1409-1416.
[6] GEYER T, SARRADJ E, FRITZSCHE C.Porous airfoils: noise reduction and boundary layer effects[J]. International journal of aeroacoustics, 2010, 9(6): 787-820.
[7] 刘家成, 陈二云, 杨爱玲, 等. 非光滑表面叶片气动及降噪特性的研究[J]. 热能动力工程, 2020, 35(12): 31-39.
LIU J C, CHEN E Y, YANG A L, et al.Study on noise reduction characteristics of blade with non-smooth surface[J]. Journal of engineering for thermal energy and power, 2020, 35(12): 31-39.
[8] 刘霞, 张一楠, 曹慧晶, 等. 基于凹凸前缘方法的风力机翼型气动噪声研究[J]. 太阳能学报, 2023, 44(4): 125-131.
LIU X, ZHANG Y N, CAO H J, et al.Study on aerodynamic noise of wind airfoil based on concave-convex leading-edge method[J]. Acta energiae solaris sinica, 2023, 44(4): 125-131.
[9] CHONG T P, JOSEPH P F.An experimental study of airfoil instability tonal noise with trailing edge serrations[J]. Journal of sound and vibration, 2013, 332(24): 6335-6358.
[10] 张玲, 谷豪飞. 弧形锯齿尾缘对叶片气动噪声影响及机理的研究[J]. 太阳能学报, 2023, 44(1): 171-178.
ZHANG L, GU H F.Study on influence of arc serrated trailing edge on blade aerodynamic noise and its mechanism[J]. Acta energiae solaris sinica, 2023, 44(1): 171-178.
[11] 汪瑞欣, 赵振宙, 王同光, 等. 锯齿尾缘DU91-W2-250风力机翼型气动及噪声特性分析[J]. 太阳能学报, 2020, 41(12): 221-228.
WANG R X, ZHAO Z Z, WANG T G, et al.Research on aerodynamics and noise characteristics of DU91-W2-250 airfoil of wind blade with serrated trailing edge[J]. Acta energiae solaris sinica, 2020, 41(12): 221-228.
[12] 王松岭, 李曙光, 刘梅, 等. 带脊状结构的NACA0018翼型气动噪声特性[J]. 科学技术与工程, 2019, 19(7): 166-171.
WANG S L, LI S G, LIU M, et al.Aerodynamic noise characteristics of NACA0018 airfoil with ridged structure[J]. Science technology and engineering, 2019, 19(7): 166-171.
[13] 吴正人, 李曙光, 刘梅, 等. 带脊状结构风力机翼型的噪声特性研究[J]. 太阳能学报, 2021, 42(3): 83-89.
WU Z R, LI S G, LIU M, et al.Aerodynamic and noise characteristics of airfoil with ridged structure[J]. Acta energiae solaris sinica, 2021, 42(3): 83-89.
[14] WALSH M J.Effect of detailed surface geometry on riblet drag reduction performance[J]. Journal of aircraft, 1990, 27(6): 572-573.
[15] 胡海豹, 宋保维, 潘光, 等. 回转体表面条纹沟槽降噪水洞试验[J]. 火力与指挥控制, 2008, 33(2): 139-141.
HU H B, SONG B W, PAN G, et al.Water tunnel test study on noise reduction of revolving bodies with riblets surface[J]. Fire control & command control, 2008, 33(2): 139-141.
[16] 党志高, 毛昭勇, 田文龙. 基于微沟槽表面海流发电叶片翼型降噪特性研究[J]. 工程热物理学报, 2020, 41(6): 1367-1374.
DANG Z G, MAO Z Y, TIAN W L.Noise reduction characteristics of hydrofoils of marine current turbines with microgrooves on the surface[J]. Journal of engineering thermophysics, 2020, 41(6): 1367-1374.
[17] 袁一平, 杨华, 石亚丽, 等. 风力机专用翼型表面微沟槽减阻特性研究[J]. 工程热物理学报, 2018, 39(6): 1258-1266.
YUAN Y P, YANG H, SHI Y L, et al.Study on drag reduction characteristics of airfoil for wind turbine with microgrooves on surface[J]. Journal of engineering thermophysics, 2018, 39(6): 1258-1266.
[18] 王伟, 宋保维, 毛昭勇, 等. 脊状结构表面圆柱绕流的流体特性研究[J]. 华中科技大学学报(自然科学版), 2018, 46(9): 107-111, 132.
WANG W, SONG B W, MAO Z Y, et al.Study on hydrodynamic characteristics of flow around a cylinder with ridged surface structure[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2018, 46(9): 107-111, 132.
[19] 张磊, 王赫鸣, 刘远强, 等. 电动水上飞机低噪声螺旋桨翼型优化[J]. 应用声学, 2023(4):871-879.
ZHANG L, WANG H M, LIU Y Q, et al.Aerofoil optimization of low noise propeller for electric seaplane[J]. Journal of applied acoustics, 2023(4):871-879.
[20] 戎瑞, 刘顺超, 王松岭, 等. 脊状结构对翼型边界层分离特性影响大涡模拟研究[J]. 空气动力学学报, 2018, 36(2): 350-356.
RONG R, LIU S C, WANG S L, et al.Study on effects of riblet structure on airfoil boundary layer separation characteristics by LES[J]. Acta aerodynamica sinica, 2018, 36(2): 350-356.
[21] LADSON C L.Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA0012 airfoil section[R]. NACA, 1988.
[22] GREGORY N, O’REILLY C L. Low-speed aerodynamic characteristics of NACA0012 aerofoil section, including the effects of upper-surface roughness simulating hoar frost[R]. NACA, Research Council Reports & Memoranda 1973.
[23] BROOKS T F, POPE D S, MARCOLINI M A.Airfoil self-noise and prediction[M]. Washington DC: NASA, 1989.
[24] 陈伟杰. 基于仿生学原理的叶片气动噪声控制实验及数值研究[D]. 西安: 西北工业大学, 2018.
CHEN W J.Experimental and numerical study on aerodynamic noise control of blades based on bionics principle[D]. Xi’an: Northwestern Polytechnical University, 2018.
[25] 胡昊. 风力机叶片气动噪声特性与降噪方法研究[D]. 北京: 华北电力大学, 2016.
HU H.Study on aerodynamic noise characteristics and noise reduction methods of wind turbine blades[D]. Beijing: North China Electric Power University, 2016.
[26] 代元军, 李保华, 徐立军, 等. 风力机近尾迹叶尖区域气动噪声变化规律的数值研究[J]. 太阳能学报, 2015, 36(2): 336-341.
DAI Y J, LI B H, XU L J, et al.Numerical study on change law of aerodynamic noise for blade tip downstream of wind turbine[J]. Acta energiae solaris sinica, 2015, 36(2): 336-341.
[27] BACHER E, SMITH C.A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications[C]//Proceedings of the Shear Flow Control Conference. Boulder, CO, USA, 1985: 1985-548.
PDF(5068 KB)

Accesses

Citation

Detail

Sections
Recommended

/