SIMULATION STUDY OF UNVENTED FILLING CHARACTERISTICS OF LIQUID HYDROGEN

Li Jianli, Geng Yinliang, Li Jingfa, Geng Jinliang, Yu Bo, Wu Xiaohua

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 747-754.

PDF(2135 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2135 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 747-754. DOI: 10.19912/j.0254-0096.tynxb.2023-1238

SIMULATION STUDY OF UNVENTED FILLING CHARACTERISTICS OF LIQUID HYDROGEN

  • Li Jianli1, Geng Yinliang2, Li Jingfa1, Geng Jinliang3, Yu Bo1, Wu Xiaohua1
Author information +
History +

Abstract

In order to obtain a systematic understandings of the unvented filling characteristics and the influencing factors of liquid hydrogen on the ground, a two-dimensional axisymmetric numerical model was established. The influences of different inlet temperatures, inlet flow rates, initial wall temperatures, and initial pressures inside the container on the unvented filling characteristics of liquid hydrogen were investigated by using Fluent software. The Lee model and a user-defined function (UDF) were used to describe the phase change issues (evaporation, and condensation) during the unvented filling of liquid hydrogen considering the interfacial tension between gas and liquid. The results show that under normal the gravity conditions, the unvented filling process of liquid hydrogen can be divided into three phases: an initial rapid pressure rise phase, a relatively stable filling phase, and a final rapid pressure rise phase. When the saturated vapor pressure corresponding to the temperature of the added liquid is greater than the pressure inside the vessel, the initial filling will lead to flash evaporation, and the pressure rise in the initial phase is significant. The inlet flow rate affects not only the total filling time, but also the vaporization pressurization at the initial stage of unvented filling, the temperature reduction degree in the system and the compression effect of gaseous hydrogen at the later stage of filling. The initial wall temperature affects the wall boiling pressurization effect during the initial filling stage. The initial pressure has a significant impact on the pressure change during the initial filling period, and the flash evaporation does not occur in the container when the initial pressure is higher than the saturation pressure of liquid hydrogen.

Key words

liquid hydrogen / constant gravity / unvented filling / filling characteristics / numerical simulation / gas phase space pressure

Cite this article

Download Citations
Li Jianli, Geng Yinliang, Li Jingfa, Geng Jinliang, Yu Bo, Wu Xiaohua. SIMULATION STUDY OF UNVENTED FILLING CHARACTERISTICS OF LIQUID HYDROGEN[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 747-754 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1238

References

[1] 耿银良, 应强, 李建立, 等. 液氢泄漏扩散及安全预防研究进展[J]. 真空与低温, 2023, 29(2): 153-162.
GENG Y L, YING Q, LI J L, et al.Research progress of liquid hydrogen leak diffusion and safety prevention[J]. Vacuum and cryogenics, 2023, 29(2): 153-162.
[2] 凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83.
LING W, LIU W, LI Y L, et al.Development strategy of hydrogen infrastructure industry in China[J]. Strategic study of CAE, 2019, 21(3): 76-83.
[3] 陈宇, 张小玉, 张荣沛. 中国氢能产业链现状及前景展望[J]. 新型工业化, 2021, 11(4): 176-180, 182.
CHEN Y, ZHANG X Y, ZHANG R P.Present situation and prospect of hydrogen energy industry chain in China[J]. The journal of new industrialization, 2021, 11(4): 176-180, 182.
[4] SUN Z Y.11 - Hydrogen energy[M]. DUTTA S, MUSTANSAR HUSSAIN C. Sustainable fuel technologies Handbook. New York: Academic Press, 2021: 339-365.
[5] GB/T 40045—2021, 氢能汽车用燃料液氢[S].
GB/T 40045—2021,Fuel specification for hydrogen powered vehicles: Liquid hydrogen(LH2)[S].
[6] GB/T 40060—2021, 液氢贮存和运输技术要求[S].
GB/T 40060—2021, Technical requirements for storage and transportation of liquid hydrogen[S].
[7] GB/T 40061—2021, 液氢生产系统技术规范[S].
GB/T 40061—2021, Technical specification for liquid hydrogen production system[S].
[8] HEDAYAT A, CARTAGENA W, MAJUMDAR A K, et al.Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank[J]. Cryogenics, 2016, 74: 106-112.
[9] KEEFER K A, HARTWIG J.Development and validation of an analytical charge-hold-vent model for cryogenic tank chilldown[J]. International journal of heat and mass transfer, 2016, 101: 175-189.
[10] CHATO D.Ground testing of the nonvented fill method of orbital propellant transfer-results of initial test series[C]//27th Joint Propulsion Conference. Sacramento, CA, USA, 1991: 2326.
[11] MORAN M E, NYLAND T W, DRISCOLL S L.Hydrogen no-vent fill testing in a 34 liter (1.2 cubic foot) tank[M]//FAST RW. Advances in Cryogenic Engineering. Boston, MA: Springer, 1992: 1257-1264.
[12] WANG C L, LI Y, DENG D, et al.Performance model of the top filling configurations for no-vent fills[J]. Journal of thermophysics and heat transfer, 2011, 25(1): 140-146.
[13] MELIDEO D, BARALDI D.CFD analysis of fast filling strategies for hydrogen tanks and their effects on key-parameters[J]. International journal of hydrogen energy, 2015, 40(1): 735-745.
[14] WANG C L, LI Y, WANG R S.Performance comparison between no-vent and vented fills in vertical thermal-insulated cryogenic cylinders[J]. Experimental thermal and fluid science, 2011, 35(2): 311-318.
[15] JIANG Y B, YU Y S, WANG Z, et al.CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions[J]. International journal of hydrogen energy, 2023, 48(19): 7026-7037.
[16] MA Y, LI Y Z, ZHU K, et al.Investigation on no-vent filling process of liquid hydrogen tank under microgravity condition[J]. International journal of hydrogen energy, 2017, 42(12): 8264-8277.
[17] SHUANG J J, LIU Y W.Efficiency analysis of depressurization process and pressure control strategies for liquid hydrogen storage system in microgravity[J]. International journal of hydrogen energy, 2019, 44(30): 15949-15961.
[18] 刘柏文, 徐元元, 雷刚, 等. 典型低温推进剂的热力学性能参数评估[J]. 火箭推进, 2023, 49(1): 44-53.
LIU B W, XU Y Y, LEI G, et al.Evaluation of thermodynamic performance parameters for typical cryogenic propellant[J]. Journal of rocket propulsion, 2023, 49(1): 44-53.
[19] 王朝, 邹宏伟, 陈甲楠, 等. 液氮、液氢加注系统数值仿真与试验研究[J]. 太阳能学报, 2022, 43(11): 460-465.
WANG C, ZOU H W, CHEN J N, et al.Numerical simulation and experimental study of liquid nitrogen and liquid hydrogen filling system[J]. Acta energiae solaris sinica, 2022, 43(11): 460-465.
[20] 朱宇豪, 卜玉, 刘瑞敏, 等. 车载液氢瓶瓶内自增压过程热力耦合特性研究[J]. 低温工程, 2023(5): 61-68.
ZHU Y H, BU Y, LIU R M, et al.Study of thermodynamic coupling characteristics in self-pressurization process within liquid hydrogen tank for vehicles[J]. Cryogenics, 2023(5): 61-68.
[21] WAN C C, ZHU S L, SHI C Y, et al.Numerical simulation on pressure evolution process of liquid hydrogen storage tank with active cryogenic cooling[J]. International journal of refrigeration, 2023, 150: 47-58.
[22] 马原, 王磊, 孙培杰, 等. 微重力环境低温流体无排气加注过程数值研究[J]. 低温工程, 2017(4): 7-13, 20.
MA Y, WANG L, SUN P J, et al.Numerical investigation of no-vent fill process of cryogens under microgravity condition[J]. Cryogenics, 2017(4): 7-13, 20.
[23] LEE W H.A pressure iteration scheme for two-phase flow modeling[M]. Washington, DC: Hemisphere Publishing, 1980.
[24] BRACKBILL J U, KOTHE D B, ZEMACH C.A continuum method for modeling surface tension[J]. Journal of computational physics, 1992, 100(2): 335-354.
PDF(2135 KB)

Accesses

Citation

Detail

Sections
Recommended

/