CONSTRUCTION OF MULTIVARIATE DIGITAL TWIN SIMULATION SYSTEM FOR MEGAWATT-SCALE ALKALINE ELECTROLYZER

Liang Tao, Liu Zicong, Tan Jianxin, Jing Yanwei, Lyu Liangnian

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 545-554.

PDF(7546 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(7546 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 545-554. DOI: 10.19912/j.0254-0096.tynxb.2023-1251

CONSTRUCTION OF MULTIVARIATE DIGITAL TWIN SIMULATION SYSTEM FOR MEGAWATT-SCALE ALKALINE ELECTROLYZER

  • Liang Tao1, Liu Zicong1, Tan Jianxin2, Jing Yanwei2, Lyu Liangnian3
Author information +
History +

Abstract

Alkaline electrolytic water hydrogen production system with strong coupling and complex operating conditions is a hazardous chemical production environment, so it is difficult to carry out extreme experiments such as wide power fluctuation test for renewable energy hydrogen production. In this paper, the 1 MW alkaline electrolyzer of Zhangjiakou Chongli hydrogen production plant is used as the research object, and the effects of variables such as temperature, pressure and alkali flow rate on parameters such as gas purity and cell voltage are analyzed by production experimental data. Firstly, the operating mechanism is analyzed, the data are fitted with multivariate nonlinearities to produce empirical equations, and the voltage model, Faraday efficiency model, and hydrogen concentration in oxygen model of the MW alkaline electrolyzer were established, and the post-treatment systems such as gas-liquid separation are modeled. Next, the model results are analyzed and verified theoretically, and the safe operation boundary of the hydrogen production system is derived from the model analysis. Finally, the mathematical model of the hydrogen production system is combined with the 3D model to realize the mapping of the hydrogen production system in the virtual space, which provides an a priori platform to study the wide power fluctuation of renewable energy hydrogen production.

Key words

alkaline electrolyzer / digital twins / hydrogen production / wide power fluctuation / multivariate / security boundaries

Cite this article

Download Citations
Liang Tao, Liu Zicong, Tan Jianxin, Jing Yanwei, Lyu Liangnian. CONSTRUCTION OF MULTIVARIATE DIGITAL TWIN SIMULATION SYSTEM FOR MEGAWATT-SCALE ALKALINE ELECTROLYZER[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 545-554 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1251

References

[1] 程文姬, 赵磊, 郗航, 等. “十四五” 规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11): 181-188.
CHENG W J, ZHAO L, XI H, et al.Research on hydrogen energy policy and water-electrolytic hydrogen under the 14th Five-Year Plan[J]. Thermal power generation, 2022, 51(11): 181-188.
[2] 徐钢, 薛小军, 张钟, 等. 一种基于电解水制氢及甲醇合成的碳中和能源技术路线[J]. 中国电机工程学报, 2023, 43(1): 191-200.
XU G, XUE X J, ZHANG Z, et al.A new carbon neutral energy technology route based on electrolytic water to hydrogen and methanol synthesis[J]. Proceedings of the CSEE, 2023, 43(1): 191-200.
[3] ACHARYA A.Scaling-up green hydrogen development with effective policy interventions[J]. Journal of sustainable development, 2022, 15(5): 135.
[4] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[5] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[6] 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175.
WANG P C, WAN L, XU Z A, et al.Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC journal, 2021, 72(12): 6161-6175.
[7] ZHENG Y, YOU S, BINDNER H W, et al.Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal-electric properties and state-transitional dynamics[J]. Applied energy, 2022, 307: 118091.
[8] HONG Z P, WEI Z X, Han X J.Optimization schedulingcontrol strategy of wind-hydrogen system considering hydrogen production efficiency[J]. Journal of energy storage, 2022, 47: 103609.
[9] HAW J, SING S L, LIU Z H.Digital twins in design for additive manufacturing[J]. Materials today: proceedings, 2022, 70: 352-357.
[10] HUANG W H, ZHANG Y J, ZENG W.Development and application of digital twin technology for integrated regional energy systems in smart cities[J]. Sustainable computing: informatics and systems, 2022, 36: 100781.
[11] 臧钊. 基于BIM+GIS的京张高速铁路空地一体 “数字孪生” 智能化运维技术研究[J]. 铁道运输与经济, 2022, 44(9): 139-145.
ZANG Z.Operation and maintenance technology of air-ground integrated\ “digital twins\” based on BIM and GIS for intelligent Beijing-Zhangjiakou high speed railway[J]. Railway transport and economy, 2022, 44(9): 139-145.
[12] YANG D G, KARIMI H R, KAYNAK O, et al.Developments of digital twin technologies in industrial, smart city and healthcare sectors: a survey[J]. Complex engineering systems, 2021, 1(1): 1-21.
[13] ZHANG C, WANG J Y, REN Z B, et al.Wind-powered 250 kW electrolyzer for dynamic hydrogen production: a pilot study[J]. International journal of hydrogen energy, 2021, 46(70): 34550-34564.
[14] 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(6): 133-136.
NING N.Research on hydrogen generation system by water electrolysis under wide power fluctuation[J]. Ship science and technology, 2017, 39(6): 133-136.
[15] HAUG P, KOJ M, TUREK T.Influence of process conditions on gas purity in alkaline water electrolysis[J]. International journal of hydrogen energy, 2017, 42(15): 9406-9418.
[16] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[17] SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International journal of hydrogen energy, 2018, 43(45): 20332-20345.
[18] SÁNCHEZ M, AMORES E, ABAD D, et al. Aspen Plus model of an alkaline electrolysis system for hydrogen production[J]. International journal of hydrogen energy, 2020, 45(7): 3916-3929.
[19] ABDIN Z, WEBB C J, GRAY E M.Modelling and simulation of an alkaline electrolyser cell[J]. Energy, 2017, 138: 316-331.
[20] 江悦, 沈小军. 碱性电解槽制氢设备数字孪生体构建及应用[J]. 高电压技术, 2022, 48(5): 1673-1683.
JIANG Y, SHEN X J.Construction and application of digital twin in hydrogen production system of alkaline water electrolyzer[J]. High voltage engineering, 2022, 48(5): 1673-1683.
[21] 江悦, 沈小军, 吕洪, 等. 碱性电解槽运行特性数字孪生模型构建及仿真[J]. 电工技术学报, 2022, 37(11): 2897-2908.
JIANG Y, SHEN X J, LYU H, et al.Construction and simulation of operation digital twin model for alkaline water electrolyzer[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2897-2908.
[22] 刘承锡, 曾冠维, 廖敏芳, 等. 大容量电解槽动态仿真建模及其快速频率响应分析[J]. 电网技术, 2023, 47(11): 4638-4646.
LIU C X, ZENG G W, LIAO M F, et al.Modeling of large-scale electrolyzers for real-time simulation and analysis of its fast frequency response[J]. Power system technology, 2023, 47(11): 4638-4646.
[23] HUG W, BUSSMANN H, BRINNER A.Intermittent operation and operation modeling of an alkaline electrolyzer[J]. International journal of hydrogen energy, 1993, 18(12): 973-977.
[24] 黄登高, 尹玉国, 胡石林, 等. 碱液流量对水电解槽运行的影响[J]. 河南化工, 2016, 33(6): 26-28.
HUANG D G, YIN Y G, HU S L, et al.Influence of alkali flow on operation of water electrolysis cell[J]. Henan chemical industry, 2016, 33(6): 26-28.
PDF(7546 KB)

Accesses

Citation

Detail

Sections
Recommended

/