ANALYSIS OF DYNAMIC CHARACTERISTICS OF HEAVE-MOTION WAVE ENERGY CONVERSION DEVICE

Cao Xueling, Ye Yin, Huang Zhenxin, Liu Yang, Zhang Yunqiu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 222-228.

PDF(1649 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1649 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 222-228. DOI: 10.19912/j.0254-0096.tynxb.2023-1272

ANALYSIS OF DYNAMIC CHARACTERISTICS OF HEAVE-MOTION WAVE ENERGY CONVERSION DEVICE

  • Cao Xueling1, Ye Yin2-4, Huang Zhenxin2-4, Liu Yang1, Zhang Yunqiu1
Author information +
History +

Abstract

This study introduces a novel simulation computation method for motion response of wave energy devices in waves, based on the implicit unsteady fluid domain k-ε turbulence model. Utilizing the Simcenter STAR-CCM+ software, the fluid simulation analysis was conducted on the motion characteristics of a single buoy in a single-degree-of-freedom (single-DOF) heaving wave energy conversion technology when subjected to wave actions. The wave energy is converted into mechanical energy through the heaving motion of the buoy and then delivered to power take-off (PTO) mechanism for power generation. The software was used to simulate the buoy's motion and force characteristics under various PTO system parameters. The research results show that the computational accuracy is extremely high, closely matching the experimental results. As the damping coefficient increases, the amplitude and speed of the buoy's wave motion decreases, resulting in a reduction in the mechanical energy converted by the buoy. Thus, when designing the wave energy device, it is imperative to minimize damping. Additionally, the equilibrium position of the buoy's heaving motion is affected by the spring constant. The newly introduced simulation computation method based on the implicit unsteady fluid domain k-ε turbulence model can be employed to analyze the hydrodynamics of various wave energy conversion devices, providing a theoretical framework for optimizing the device's structure and performance under real sea conditions.

Key words

wave power / cylindrical floating body / CFD / hydraulics / wave energy conversion(WEC) / system performance

Cite this article

Download Citations
Cao Xueling, Ye Yin, Huang Zhenxin, Liu Yang, Zhang Yunqiu. ANALYSIS OF DYNAMIC CHARACTERISTICS OF HEAVE-MOTION WAVE ENERGY CONVERSION DEVICE[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 222-228 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1272

References

[1] 郑崇伟, 贾本凯, 郭随平,等. 全球海域波浪能资源储量分析[J]. 资源科学, 2013, 35(8): 1611-1616.
ZHENG C W, JIA B K, GUO S P, et al.Wave energy resource storage assessment in global ocean[J]. Resources science, 2013, 35(8): 1611-1616.
[2] WHITTAKER T J T, FOLLEY M. Nearshore oscillating wave surge converters and development of Oyster[J]. Philosophical Transactions of the Royal Society A: mathematical, physical & engineering sciences, 2012, 370: 345-364.
[3] YEMM R, PIZER D, RETZLER C, et al.Pelamis: experience from concept to connection[J]. Philosophical Transactions of the Royal Society A: mathematical, physical & engineering sciences, 2012, 370: 365-380.
[4] ADERINTO T, LI H.Review on power performance and efficiency of wave energy converters[J]. Energies, 2019, 12(22): 4329-4329.
[5] FALCAO A F O, HENRIQUES J C C, GATO L M C. Self-rectifying air turbines for wave energy conversion: a comparative analysis[J]. Renewable and sustainable energy reviews, 2018, 91: 1231-1241.
[6] CHEN A J, YOU Y G, SHENG S W,et al.Nonlinear analysis of the crashworthy component of an eagle wave energy converter in rotating-collision[J]. Ocean engineering, 2016, 125: 285-294.
[7] LI D M, DONG X C, SHI H D, et al.Theoretical and experimental study of a coaxial double-buoy wave energy converter[J]. China ocean engineering, 2021, 35(3): 454-464.
[8] BABARIT A.Ocean wave energy conversion: resource, technologies and performance[M]. Iste press-elsevier, 2017: 16-25.
[9] LASA J, ANTOLIN J C, ANGULO C, et al.Design, construction and testing of a hydraulic power take-off for wave energy converters[J]. Energies, 2012, 5(6): 2030-2052.
[10] KIM S J, KOO W, SHIN M J.Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system[J]. Renewable energy, 2018, 135(3): 1260-1269.
[11] SHENG S W, WANG K L, LIN H J, et al.Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan[J]. Renewable energy, 2017, 113:587-595.
[12] 曹飞飞, 史宏达, 赵晨羽, 等. 振荡浮子波浪发电装置物理模型试验研究[J]. 太阳能学报, 2020, 41(5): 244-249.
CAO F F, SHI H D, ZHAO C Y, et al.Experimental study on a heaving buoy wave energy converter[J]. Acta energiae solaris sinica, 2020, 41(5): 244-249.
[13] WU B J, WANG X, DIAO X H, et al.Response and conversion efficiency of two degrees of freedom wave energy[J]. Ocean engineering, 2014, 76: 10-20.
[14] 盛松伟, 叶寅. 圆柱形波浪能吸收体水动力学分析与优化设计[J]. 太阳能学报, 2013, 34(3): 542-546.
SHENG S W, YE Y.Hydrodynamic analysis and optimal design for a vertical circular wave energy device[J]. Acta energiae solaris sinica, 2013, 34(3): 542-546.
[15] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析[J]. 水力发电学报, 2019, 38(9): 91-101.
HU Y, YANG S H, HE H Z, et al.Hydrodynamic performance analysis of semi-submersible multi-body wave power plant[J]. Journal of hydroelectric engineering, 2019, 38(9): 91-101.
[16] 尹则高, 杨博, 高成岩, 等. 随机波作用下圆柱形垂荡浮子水动力行为的数值研究[J]. 太阳能学报, 2019, 40(5): 1207-1211.
YIN Z G, YANG B, GAO C Y, et al.Numerical study on hydrodynamic behavior of a heaving cylinder buoy with random wave[J]. Acta energiae solaris sinica, 2019, 40(5): 1207-1211.
[17] 肖晓龙, 肖龙飞, 李扬. 基于非线性能量俘获机制的直驱浮子式波浪能发电装置研究[J]. 振动与冲击, 2018, 37(2): 156-162.
XIAO X L, XIAO L F, LI Y.A directly driven floater type wave energy converter with nonlinear power-take-off mechanism in irregular waves[J]. Journal of vibration and shock, 2018, 37(2): 156-162.
[18] SJÖKVIST L, KRISHNA R, RAHM M,et al. On the optimization of point absorber buoys[J]. Journal of marine science and engineering, 2014, 2(2): 477-492.
[19] GAO H, YU Y.The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves[J]. Energy, 2018, 143: 833-845.
[20] SHI H D, HUANG S T, CAO F F.Hydrodynamic performance and power absorption of a multi-freedom buoy wave energy device[J]. Ocean engineering, 2019, 172: 541-549.
[21] RUEZGA A, CANEDO J M.Buoy analysis in a point-absorber wave energy converter[J]. IEEE journal of oceanic engineering, 2020, 45(2): 472-479.
[22] YEUNG R W, PEIFFER A, TOM N,et al.Design, analysis, and evaluation of the UC-Berkeley wave-energy extractor[J]. Journal of offshore mechanics and arctic engineering, 2012, 134(2): 021902.
[23] GUNAWARDANE S D G S P,?BANDARA G A C T, LEE Y H. Hydrodynamic analysis of a novel wave energy converter: hull reservoir wave energy converter (HRWEC)[J]. Renewable energy, 2021, 170: 1020-1039.
[24] ANDERSEN N E, MATHIASEN J B, CAROE M G,et al.Optimisation of control algorithm for hydraulic power take-off system in wave energy converter[J]. Energies, 2022, 15(19):7084-7084.
PDF(1649 KB)

Accesses

Citation

Detail

Sections
Recommended

/