NUMERICAL SIMULATION OF DRAG REDUCTION ON WIND TURBINE AIRFOIL SURFACES USING CONVEX HULL STRUCTURES

Zhao Meng, Lan Xingbo, Hou Buying, Liu Yinzhen

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 574-585.

PDF(9356 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(9356 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (9) : 574-585. DOI: 10.19912/j.0254-0096.tynxb.2023-1282

NUMERICAL SIMULATION OF DRAG REDUCTION ON WIND TURBINE AIRFOIL SURFACES USING CONVEX HULL STRUCTURES

  • Zhao Meng1, Lan Xingbo1, Hou Buying1, Liu Yinzhen2
Author information +
History +

Abstract

Based on the drag reduction principle of non-smooth convex surfaces, the optimal parameters of hemispherical convex hull structure were determined by analyzing the flow field characteristics under different structural parameters. On this basis, streamlined convex hulls were defined to explore the differences in drag reduction between the two structures, and the impact of the convex hull structure on wind turbines was analyzed. Numerical simulations were conducted on NACA0012 airfoils with two types of convex hulls and on a wind turbine with hemispherical convex hulls, and their aerodynamic characteristics were analyzed. The study revealed that when the height of the hemispherical convex hull is 0.4% of the chord length, it achieves the best drag reduction, performing well within an angle of attack range of 10° to 16°. The convex hull structure with a spacing ratio of 3 provides the optimal drag reduction effect for the airfoil. Both hemispherical and streamlined convex hull structures achieve the best drag reduction at an angle of attack of 14°, with maximum drag reduction rates of 12.69% and 17.39%, respectively. Compared to the hemispherical convex hull structure, the streamlined convex hull structure has smaller curvature changes in shape, allowing the flow to adhere better at the fluid-object interface, thus reducing the energy consumption of viscous drag. Considering the manufacturing process difficulty and practical application, the optimized convex hull structures were applied to the surface of wind turbine blades. Compared to the original wind turbine, the radius of the energy utilization zone of the wind turbine with convex hull structures increased by 20.68%; The impact of tip vortices on the high-speed flow region was reduced, the distribution of turbulent kinetic energy became more uniform, and under rated conditions, its torque and thrust were increased by 14.72% and 5.41%, respectively. This improved the energy utilization rate and operational stability.

Key words

wind turbines / airfoils / flow fields / drag reduction / convex hull structure / numerical simulation

Cite this article

Download Citations
Zhao Meng, Lan Xingbo, Hou Buying, Liu Yinzhen. NUMERICAL SIMULATION OF DRAG REDUCTION ON WIND TURBINE AIRFOIL SURFACES USING CONVEX HULL STRUCTURES[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 574-585 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1282

References

[1] 陈安杰, 王策, 贾娅娅, 等. 基于BEM的风力机叶片气动性能计算分析[J]. 工程力学, 2021, 38(S1): 264-268.
CHEN A J, WANG C, JIA Y Y, et al.Calculation and analysis of aerodynamic performance of wind turbine based on BEM[J]. Engineering mechanics, 2021, 38(S1): 264-268.
[2] 杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7.
YANG Y, ZENG P, LEI L P.Concept and development of novel blade structure of large horizontal-axis wind turbine[J]. Engineering mechanics, 2019, 36(10): 1-7.
[3] 杨瑞, 顾恩鑫, 周楠楠, 等. V型沟槽对钝尾缘翼型流场分布及气动性能影响的研究[J]. 太阳能学报, 2022, 43(4): 402-408.
YANG R, GU E X, ZHOU N N, et al.Study on influence of V-groove on flow field distribution and aerodynamic performance of blunt trailing edge airfoil[J]. Acta energiae solaris sinica, 2022, 43(4): 402-408.
[4] 张子良, 张明明. 仿生减阻翼型的气动性能[J]. 航空动力学报, 2021, 36(8): 1740-1748.
ZHANG Z L, ZHANG M M.Aerodynamic performance for bionic drag-reducing airfoil[J]. Journal of aerospace power, 2021, 36(8): 1740-1748.
[5] GU Y Q, XIA K, ZHANG W Q, et al.Airfoil profile surface drag reduction characteristics based on the structure of the mantis shrimp abdominal segment[J]. Archive of applied mechanics, 2021, 91(3): 919-932.
[6] 朱海燕, 胡华涛, 尹必超, 等. 基于凸包非光滑表面的高速列车减阻技术[J]. 铁道机车车辆, 2021, 41(1): 1-8.
ZHU H Y, HU H T, YIN B C, et al.Drag reduction technology for high-speed train based on non-smooth surface of convex hull[J]. Railway locomotive & car, 2021, 41(1): 1-8.
[7] 牛志罡, 罗大海, 王子尧. 表面微沟槽对风力机翼型气动性能的影响研究[J]. 动力工程学报, 2022, 42(12): 1246-1254.
NIU Z G, LUO D H, WANG Z Y.Influence of surface riblets on the aerodynamic performance of wind turbine airfoils[J]. Journal of Chinese Society of Power Engineering, 2022, 42(12): 1246-1254.
[8] SUN J Y, WANG Y M, ZHANG S J, et al.The mechanism of resistance-reducing/anti-adhesion and its application on biomimetic disc furrow opener[J]. Mathematical biosciences and engineering, 2020, 17(5): 4657-4677.
[9] YANG X P, WANG J, JIANG B Y, et al.Numerical study of effect of sawtooth riblets on low-reynolds-number airfoil flow characteristic and aerodynamic performance[J]. Processes, 2021, 9(12): 2102.
[10] 李奕轩, 吴洪磊, 侬玉昌. 低风速风机非光滑叶片减阻特性研究[J]. 机电工程, 2022, 39(11): 1519-1526.
LI Y X, WU H L, NONG Y C.Drag reduction characteristics of non-smooth blade of low wind speed fan[J]. Journal of mechanical & electrical engineering, 2022, 39(11): 1519-1526.
[11] 李根, 刘青松, 李春, 等. 基于正交试验凹槽-襟翼垂直轴风力机数值研究[J]. 太阳能学报, 2023, 44(5): 294-301.
LI G, LIU Q S, LI C, et al.Numerical study of vertical axis wind turbine with dimple-flaps based on orthogonal test[J]. Acta energiae solaris sinica, 2023, 44(5): 294-301.
[12] 王强, 赵鹏飞, 陈旭东, 等. 基于分离涡方法的标准CAARC模型流固耦合风致响应分析[J]. 科学技术与工程, 2023, 23(23): 10075-10084.
WANG Q, ZHAO P F, CHEN X D, et al.Analysis of wind-induced response of CAARC model using detached eddy simulation based on fluid-structure interaction[J]. Science technology and engineering, 2023, 23(23): 10075-10084.
[13] SUN Z Y, SHI R K, ZHU W J, et al.Accurate stall prediction for thick airfoil by delayed detached-eddy simulations[J]. Atmosphere, 2022, 13(11): 1804.
[14] 吉正杰, 张锦, 殷玉枫, 等. 风力机翼型在偏航载荷下的复合运动的动态失速分析[J]. 太阳能学报, 2021, 42(6): 377-384.
JI Z J, ZHANG J, YIN Y F, et al.Dynamic stall analysis of compound motion of wind turbine airfoil under yaw load[J]. Acta energiae solaris sinica, 2021, 42(6): 377-384.
[15] 付云豪, 章卫国, 史静平, 等. 下表面射流对翼型气动性能影响的数值模拟[J]. 哈尔滨工业大学学报, 2021, 53(6): 48-53.
FU Y H, ZHANG W G, SHI J P, et al.Numerical simulation of influence of jet at lower surface on aerodynamic performance of airfoil[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 48-53.
[16] JOSEPH D R, DEVI P B, GOPALSAMY M.Investigation on effect of square dimples on NACA0012 airfoil with various Reynolds numbers[J]. International journal of ambient energy, 2021, 42(4): 397-402.
[17] VELICHKOVA R, ILIEV R, PICHUROV G, et al.Numerical study of the torque and power of a hydraulic turbine with oscillating blades[J]. Energies, 2023, 16(18): 6744.
[18] 李德顺, 何婷, 王清. 颗粒直径对风力机翼型动态失速特性的影响研究[J]. 太阳能学报, 2023, 44(12): 207-213.
LI D S, HE T, WANG Q.Influence of particle diameter on dynamic stall characteristics of wind turbine airfoil[J]. Acta energiae solaris sinica, 2023, 44(12): 207-213.
[19] 刘晓禹. 偏航状态下风力发电机气动性能及叶片表面结构优化研究[D]. 呼和浩特: 内蒙古工业大学, 2020.
LIU X Y.Research on aerodynamic characteristics and blade surface structure optimization of wind turbine under yaw flow[D]. Hohhot: Inner Mongolia University of Tehchnology, 2020.
[20] 王国付, 张明明, 徐建中. 风电仿生大厚翼型气动控制实验研究[J]. 工程热物理学报, 2017, 38(11): 2363-2366.
WANG G F, ZHANG M M, XU J Z.Experimental study on wavy edge aerodynamic characteristics of big thick of wind turbine airfoil[J]. Journal of engineering thermophysics, 2017, 38(11): 2363-2366.
PDF(9356 KB)

Accesses

Citation

Detail

Sections
Recommended

/