PREDICTIVE WAKE OPTIMIZATION CONTROL FOR FLOATING WIND FARM MODELS CONSIDERING TILT AND YAW

Wang Xiaodong, Li Binbin, Liu Yingming, Zhu Ruonan, Wang Ruojin, Xu Xuefeng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 235-242.

PDF(21335 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(21335 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 235-242. DOI: 10.19912/j.0254-0096.tynxb.2023-1283

PREDICTIVE WAKE OPTIMIZATION CONTROL FOR FLOATING WIND FARM MODELS CONSIDERING TILT AND YAW

  • Wang Xiaodong, Li Binbin, Liu Yingming, Zhu Ruonan, Wang Ruojin, Xu Xuefeng
Author information +
History +

Abstract

A curled wake model for floating wind farms suitable for wake optimization control is proposed based on the characteristics of floating wind turbines. This model focuses on the dynamic characteristics of the inclined wake of units in floating wind farms, and considers the calculation of inclination and yaw deviation based on the quasi steady state curled wake model. On this basis, a model predictive wake optimization control method is proposed to coordinate the output of each unit with the goal of maximizing the output power of a floating wind farm. In FAST.Farm, the accuracy of the established models is verified by comparing the wake loss velocities calculated by the quasi steady state curled wake model (curl-N), initial curled wake model (curl-O), polar wake model (Polar), and large eddy simulation (LES). To demonstrate the effectiveness of the optimization control method, the output characteristics are compared with those of wake free optimization and traditional wake optimization. The results show that the proposed quasi steady state curled wake model can be applied to wake optimization control, and the model predicts that wake optimization control can effectively improve the overall output of floating wind farms.

Key words

offshore wind farms / wakes / model predictive control / optimize control / power generation increase

Cite this article

Download Citations
Wang Xiaodong, Li Binbin, Liu Yingming, Zhu Ruonan, Wang Ruojin, Xu Xuefeng. PREDICTIVE WAKE OPTIMIZATION CONTROL FOR FLOATING WIND FARM MODELS CONSIDERING TILT AND YAW[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 235-242 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1283

References

[1] 黄海龙, 胡志良, 代万宝, 等. 海上风电发展现状及发展趋势[J]. 能源与节能, 2020(6): 51-53.
HUANG H L, HU Z L, DAI W B, et al.Development status and trend of offshore wind power[J]. Energy and energy conservation, 2020(6): 51-53.
[2] 许移庆, 张友林. 漂浮式海上风电发展概述[J]. 风能, 2020(5): 56-61.
XU Y Q, ZHANG Y L.Overview of floating offshore wind power development[J]. Wind energy, 2020(5): 56-61.
[3] 徐纪忠, 潘国兵, 陈坚, 等. 海上风电场自耗能现状及海上风电发展趋势分析[J]. 太阳能, 2022(9): 28-35.
XU J Z, PAN G B, CHEN J, et al.Self-energy consumption status of offshore wind farms and development trend analysis of offshore wind power[J]. Solar energy, 2022(9): 28-35.
[4] MENG H, LIEN F S, LI L.Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade[J]. Renewable energy, 2018, 116: 423-437.
[5] AHMAD T, BASIT A, AHSAN M, et al.Implementation and analyses of yaw based coordinated control of wind farms[J]. Energies, 2019, 12(7): 1266.
[6] 吴亚联, 郭潇潇, 苏永新, 等. 机组间偏航和有功功率综合协调的海上风电场增效方法[J]. 电力系统自动化, 2017, 41(7): 74-80.
WU Y L, GUO X X, SU Y X, et al.Effective optimization method for offshore wind farm considering comprehensive coordination of yaw and active power among wind turbines[J]. Automation of electric power systems, 2017, 41(7): 74-80.
[7] 宋子秋, 冯翰宇, 余照国, 等. 基于模型预测控制的半潜漂浮式风机协调控制方法研究[J]. 中国电机工程学报, 2022, 42(12): 4330-4339.
SONG Z Q, FENG H Y, YU Z G, et al.Coordinated control of semi-submersible floating turbine with model predictive control strategy[J]. Proceedings of the CSEE, 2022, 42(12): 4330-4339.
[8] WANG Y, WEI S B, YANG W, et al.Construction of offline predictive controller for wind farm based on CNN-GRNN[J]. Control engineering practice, 2022, 127: 105290.
[9] ORUKPE P.Model predictive control fundamentals[M]. Nsukka: Nigerian Journal of Technology, 2012.
[10] VALI M, PETROVIĆ V, BOERSMA S, et al.Adjoint-based model predictive control for optimal energy extraction in waked wind farms[J]. Control engineering practice, 2019, 84: 48-62.
[11] YIN X X, ZHAO X W.Data driven learning model predictive control of offshore wind farms[J]. International journal of electrical power & energy systems, 2021, 127: 106639.
[12] 冯浩, 彭秀芳, 项雯, 等. 基于SSA-BP的风电场超短期风速预测方法研究[J]. 电力勘测设计, 2023(3): 37-42, 50.
FENG H, PENG X F, XIANG W, et al.Research on ultra-short-term wind speed forecasting of wind farm based on SSA-BP[J]. Electric power survey & design, 2023(3): 37-42, 50.
[13] 李昌, 王渊博, 蒋明真, 等. 不同风况下半潜漂浮式风力机动力学响应分析[J]. 太阳能学报, 2023, 44(4): 85-91.
LI C, WANG Y B, JIANG M Z, et al.Dynamic response analysis of semi-submersible floating wind turbine under different wind conditions[J]. Acta energiae solaris sinica, 2023, 44(4): 85-91.
[14] 王金铭, 卢奭瑄, 何新, 等. 大型风力发电机风能利用系数参数拟合的研究[J]. 太阳能学报, 2012, 33(2): 221-225.
WANG J M, LU S X, HE X, et al.Study on parameters matching of rotor power coefficient for large scale wind turbine[J]. Acta energiae solaris sinica, 2012, 33(2): 221-225.
[15] WEN B R, TIAN X L, ZHANG Q, et al.Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine[J]. Renewable energy, 2019, 135: 1186-1199.
[16] 李彬彬, 王晓东, 刘颖明, 等. 考虑尾流效应的漂浮式风电场偏航优化控制策略研究[J]. 电器与能效管理技术, 2023(11): 67-73.
LI B B, WANG X D, LIU Y M, et al.Research on yaw optimization control strategy for floating wind farm considering wake effect[J]. Low voltage apparatus, 2023(11): 67-73.
[17] 刘颖明, 崔家平, 王晓东, 等. 不同类型漂浮式风电场内机组塔基载荷研究[J]. 太阳能学报, 2022, 43(12): 407-414.
LIU Y M, CUI J P, WANG X D, et al.Research on tower base load of wind turbines in different types of floating wind farm[J]. Acta energiae solaris sinica, 2022, 43(12): 407-414.
PDF(21335 KB)

Accesses

Citation

Detail

Sections
Recommended

/