COMBINING PROBABILISTIC PREDICTION OF PV POWER BASED ON SELF-ATTENTION FEATURE EXTRACTION MECHANISM

Wang Jiale, Zhang Yao, Lin Fan, Zhou Yidan, Sun Qianhao

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 123-131.

PDF(2072 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2072 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 123-131. DOI: 10.19912/j.0254-0096.tynxb.2023-1286

COMBINING PROBABILISTIC PREDICTION OF PV POWER BASED ON SELF-ATTENTION FEATURE EXTRACTION MECHANISM

  • Wang Jiale, Zhang Yao, Lin Fan, Zhou Yidan, Sun Qianhao
Author information +
History +

Abstract

To accurately predict the probability distribution of photovoltaic output, this paper proposes a novel approach for probabilistic forecasting of photovoltaic power based on self-attention feature extraction mechanism. This method addresses the limitations of traditional linear combining prediction methods in terms of information utilization and flexibility. Firstly, a model pool is constructed which includes both homogeneous models and heterogeneous models. Subsequently, a feature extraction module based on self-attention mechanism is employed to adaptively extract features from the predictions of the base models. Lastly, the extracted features from the base models and the external features are input into a residual fully-connected network to achieve monotonic quantile prediction through quantile increment prediction. Experimental analysis using publicly available photovoltaic datasets demonstrates that the proposed method outperforms individual models and traditional linear combination methods in terms of overall performance.

Key words

photovoltaic power / probabilistic prediction / self-attention / combination prediction / residual connection / quantile prediction

Cite this article

Download Citations
Wang Jiale, Zhang Yao, Lin Fan, Zhou Yidan, Sun Qianhao. COMBINING PROBABILISTIC PREDICTION OF PV POWER BASED ON SELF-ATTENTION FEATURE EXTRACTION MECHANISM[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 123-131 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1286

References

[1] 张雪松, 李鹏, 周亦尧, 等. 基于贝叶斯概率的光伏出力组合预测方法[J]. 太阳能学报, 2021, 42(10): 80-86.
ZHANG X S, LI P, ZHOU Y Y, et al.Photovoltaic output combination forecasting method based on Bayesian probability[J]. Acta energiae solaris sinica, 2021, 42(10): 80-86.
[2] 杜晓东, 赵建利, 刘科研, 等. 基于数字孪生的光伏高比例配电网过载风险预警方法[J]. 电力系统保护与控制, 2022, 50(9): 136-144.
DU X D, ZHAO J L, LIU K Y, et al.Digital twin early warning method study for overload risk of distribution network with a high proportion of photovoltaic access[J]. Power system protection and control, 2022, 50(9): 136-144.
[3] 张立栋, 李继影, 吴颖, 等. 不同时间分辨率的风功率时间序列ARIMA模型预测[J]. 中国电力, 2016, 49(6): 176-180.
ZHANG L D, LI J Y, WU Y, et al.ARIMA model forecast for wind power time series with different temporal resolutions[J]. Electric power, 2016, 49(6): 176-180.
[4] 王献志, 曾四鸣, 周雪青, 等. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 236-242.
WANG X Z, ZENG S M, ZHOU X Q, et al.Power forecast of photovoltaic generation based on XGBoost combined model[J]. Acta energiae solaris sinica, 2022, 43(4): 236-242.
[5] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[6] 杨楠, 周峥, 陈道君, 等. 基于非参数核密度估计的风功率波动性概率密度建模方法[J]. 太阳能学报, 2019, 48(7): 2028-2035.
YANG N, ZHOU Z, CHEN D J, et al.Research of modeling method based on non-parametric kernel density estimation of probability of wind power fluctuations[J]. Acta energiae solaris sinica, 2019, 48(7): 2028-2035.
[7] ZHANG W J, QUAN H, GANDHI O, et al.Improving probabilistic load forecasting using quantile regression NN with skip connections[J]. IEEE transactions on smart grid, 2020, 11(6): 5442-5450.
[8] CHAI S J, XU Z, WONG W K.Optimal granule-based PIs construction for solar irradiance forecast[J]. IEEE transactions on power systems, 2016, 31(4): 3332-3333.
[9] XIE J R, HONG T, LAING T, et al.On normality assumption in residual simulation for probabilistic load forecasting[J]. IEEE transactions on smart grid, 2017, 8(3): 1046-1053.
[10] LIN F, ZHANG Y, WANG K, et al.Parametric probabilistic forecasting of solar power with fat-tailed distributions and deep neural networks[J]. IEEE transactions on sustainable energy, 2022, 13(4): 2133-2147.
[11] 贾德香, 吕干云, 林芬, 等. 基于SAPSO-BP和分位数回归的光伏功率区间预测[J]. 电力系统保护与控制, 2021, 49(10): 20-26.
JIA D X, LYU G Y, LIN F, et al.Photovoltaic power interval prediction based on SAPSO-BP and quantile regression[J]. Power system protection and control, 2021, 49(10): 20-26.
[12] RUAS M, STREET A, FERNANDES C.A multi-quantile regression time series model with interquantile lipschitz regularization for wind power probabilistic forecasting[J]. Electric power systems research, 2022, 209: 107973.
[13] 程泽, 刘冲, 刘力. 基于相似时刻的光伏出力概率分布估计方法[J]. 电网技术, 2017, 41(2): 448-454.
CHENG Z, LIU C, LIU L.A method of probabilistic distribution estimation of PV generation based on similar time of day[J]. Power system technology, 2017, 41(2): 448-454.
[14] WANG K, ZHANG Y, LIN F, et al.Nonparametric probabilistic forecasting for wind power generation using quadratic spline quantile function and autoregressive recurrent neural network[J]. IEEE transactions on sustainable energy, 2022, 13(4): 1930-1943.
[15] WANG X Q, HYNDMAN R J, LI F, et al.Forecast combinations: an over 50-year review[J]. International journal of forecasting, 2023, 39(4): 1518-1547.
[16] 游文霞, 申坤, 杨楠, 等. 基于Bagging异质集成学习的窃电检测[J]. 电力系统自动化, 2021, 45(2): 105-113.
YOU W X, SHEN K, YANG N, et al.Electricity theft detection based on Bagging heterogeneous ensemble learning[J]. Automation of electric power systems, 2021, 45(2): 105-113.
[17] LI T Y, WANG Y, ZHANG N.Combining probability density forecasts for power electrical loads[J]. IEEE transactions on smart grid, 2020, 11(2): 1679-1690.
[18] WANG Y, ZHANG N, TAN Y S, et al.Combining probabilistic load forecasts[J]. IEEE transactions on smart grid, 2019, 10(4): 3664-3674.
[19] LU C B, LIANG J H, JIANG W Q, et al.High-resolution probabilistic load forecasting: a learning ensemble approach[J]. Journal of the Franklin Institute, 2023, 360(6): 4272-4296.
[20] LICHTENDAHL K C, WINKLER R L.Why do some combinations perform better than others?[J]. International journal of forecasting, 2020, 36(1): 142-149.
PDF(2072 KB)

Accesses

Citation

Detail

Sections
Recommended

/