RESEARCH ON THREE-DIMENSIONAL WAKE MODEL OF FLOATING OFFSHORE WIND TURBINE

Zhang Ping, Li Chengcheng, Han Ye, Xie Pengfei, Tan Yuhang, Liu Xin

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 612-617.

PDF(2285 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2285 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 612-617. DOI: 10.19912/j.0254-0096.tynxb.2023-1307

RESEARCH ON THREE-DIMENSIONAL WAKE MODEL OF FLOATING OFFSHORE WIND TURBINE

  • Zhang Ping1, Li Chengcheng2, Han Ye3, Xie Pengfei3, Tan Yuhang3, Liu Xin3
Author information +
History +

Abstract

With consideration of the special mooring system of floating offshore wind turbine and the deep-sea environment in which the grounding system is situated, taking into account both the effect of surge motion on incoming wind velocity and turbulence intensity, an three-dimensional wake model(3Dksg_BP) is proposed on the basis of the two-dimensional BP engineering wake model in this paper, which is used to predict the transverse and vertical wind velocity profiles in the full wake region. The obtained results are compared with the measured data of the wind tunnel experiment, and it was found that the prediction accuracy of the downstream locations of 1.7D, 2.3D, 5.0D and 10.0D was not less than 97.6%. Based on 3Dksg_BP, the effects of the surge motion on the wake at different frequencies and amplitudes are studied. The results show that the effects of the surge motion on the wake increase with the increase of frequency and amplitude, and the effects of the surge motion on the wake decrease with the increase of downstream distance.

Key words

wind turbines / offshore wind power / wakes / analytical models / floating wind turbine / platform motion

Cite this article

Download Citations
Zhang Ping, Li Chengcheng, Han Ye, Xie Pengfei, Tan Yuhang, Liu Xin. RESEARCH ON THREE-DIMENSIONAL WAKE MODEL OF FLOATING OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 612-617 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1307

References

[1] TSAI Y C, HUANG Y F, YANG J T.Strategies for the development of offshore wind technology for far-east countries: a point of view from patent analysis[J]. Renewable and sustainable energy reviews, 2016, 60: 182-194.
[2] SHAKOOR R, HASSAN M Y, RAHEEM A, et al.Wake effect modeling: a review of wind farm layout optimization using Jensen's model[J]. Renewable and sustainable energy reviews, 2016, 58: 1048-1059.
[3] JENSEN N O.A note on wind generator interaction[M]. Roskilde, Denmark: Risø National Laboratory, 1983.
[4] 田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014.
TIAN L L.Numerical simulation of wind turbine wakes and the study of wind farm layout optimization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[5] 杨祥生, 赵宁, 田琳琳, 等. 基于Park-Gauss模型的风场尾流数值模拟[J]. 太阳能学报, 2016, 37(9): 2224-2229.
YANG X S, ZHAO N, TIAN L L, et al.Wake numerical simulation of wind farm based on the Park-Gauss model[J]. Acta energiae solaris sinica, 2016, 37(9): 2224-2229.
[6] 宋翌蕾, 田琳琳, 赵宁. 风力机三维尾流模型的提出与校核[J]. 太阳能学报, 2021, 42(2): 129-135.
SONG Y L, TIAN L L, ZHAO N.Proposal and validation of a new 3D wake model for wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 129-135.
[7] 李兵兵. 水平轴风力发电机三维尾流特性理论及实验研究[D]. 北京: 华北电力大学, 2020.
LI B B.Theoretical and experimental study on three-dimensional wake characteristics of horizontal-axis wind turbine[D]. Beijing: North China Electric Power University, 2020.
[8] FRANDSEN S.On the wind speed reduction in the center of large clusters of wind turbines[J]. Journal of wind engineering and industrial aerodynamics, 1992, 39(1/2/3): 251-265.
[9] BASTANKHAH M, PORTÉ-AGEL F.A new analytical model for wind-turbine wakes[J]. Renewable energy, 2014, 70: 116-123.
[10] SEBASTIAN T, LACKNER M A.Characterization of the unsteady aerodynamics of offshore floating wind turbines[J]. Wind energy, 2013, 16(3): 339-352.
[11] 黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.
LI Z W, HE D X.Reviews of fluid dynamics researches in wind energy engineering[J]. Advances in mechanics, 2013, 43(5): 472-525.
[12] GUALTIERI G.Atmospheric stability varying wind shear coefficients to improve wind resource extrapolation: a temporal analysis[J]. Renewable energy, 2016, 87: 376-390.
[13] DE VAAL J B, HANSEN M O, MOAN T. Effect of wind turbine surge motion on rotor thrust and induced velocity[J]. Wind energy, 2014, 17(1): 105-121.
[14] FRANDSEN S, CHACON L, CRESPO A, et al.Measurements on and modelling of offshore wind farms[R].Risø-R-9O3(EN), 1996
[15] BAYATI I, BELLOLI M, BERNINI L, et al.Wind tunnel wake measurements of floating offshore wind turbines[J]. Energy procedia, 2017, 137: 214-222.
[16] KHOSRAVI M, SARKAR P, HU H.An experimental study on the effects of base motion on the aeromechanic performance of floating wind turbines[J]. Journal of physics: conference series, 2016, 753: 092015.
[17] JOHLAS H M, MARTÍ­NEZ-TOSSAS L A, SCHMIDT D P, et al. Large eddy simulations of floating offshore wind turbine wakes with coupled platform motion[J]. Journal of physics: conference series, 2019, 1256(1): 012018.
[18] CHAMORRO L P, PORTÉ-AGEL F.Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study[J]. Boundary-layer meteorology, 2010, 136(3): 515-533.
[19] SCHLEZ W, TINDAL A, QUARTON D.GH wind farmer validation report[M]. Bristol: Garrad Hassan and Partners Ltd, 2003.
PDF(2285 KB)

Accesses

Citation

Detail

Sections
Recommended

/