STUDY ON WAVE LOAD CHARACTERISTICS OF LARGER DIAMETER MONOPILE FOUNDATION FOR OFFSHORE WIND POWER

He Ben, Song Mengxia, Wei Maoxing, Li Wei, He Fang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 324-330.

PDF(1103 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1103 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 324-330. DOI: 10.19912/j.0254-0096.tynxb.2023-1318

STUDY ON WAVE LOAD CHARACTERISTICS OF LARGER DIAMETER MONOPILE FOUNDATION FOR OFFSHORE WIND POWER

  • He Ben1, Song Mengxia2, Wei Maoxing2, Li Wei1, He Fang2
Author information +
History +

Abstract

The Morison equation is a widely used formula for calculating wave loads on offshore wind turbine monopile foundations. However, as monopile diameters increase, diffraction effects can no longer be ignored, and the Morison equation method becomes less accurate. This study investigates the horizontal wave load on large-diameter monopile foundations with a pile-diameter to wavelength ratio ranging from 0.15 to 0.25. To this end, a combination of physical model experiments and computational fluid dynamics (CFD) numerical simulations was employed. The variation of the maximum horizontal wave load was analyzed for monopiles of different diameters under different wave conditions. A curve depicting the values of the inertia force coefficient was given, and an empirical formula based on the Morison equation was proposed for calculating the maximum horizontal wave load on large-diameter monopile foundations.

Key words

offshore wind turbines / pile foundations / curve fitting / Morison equation / wave load

Cite this article

Download Citations
He Ben, Song Mengxia, Wei Maoxing, Li Wei, He Fang. STUDY ON WAVE LOAD CHARACTERISTICS OF LARGER DIAMETER MONOPILE FOUNDATION FOR OFFSHORE WIND POWER[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 324-330 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1318

References

[1] 国家发展与改革委员会. “十四五”可再生能源发展规划[R]. 2022.
NDRC. 14th Five-Year Plan for Renewable Energy Development[R]. 2022.
[2] MATHERN A, VON DER HAAR C, MARX S. Concrete support structures for offshore wind turbines: current status, challenges, and future trends[J]. Energies, 2021, 14(7): 1995.
[3] 高海燕. 海上风电机组单桩支撑结构和基础设计分析[J]. 科技资讯, 2020, 18(33): 35-36, 49.
GAO H Y.Design and analysis of single pile supporting structure and foundation of offshore wind turbine[J]. Science & Technology Information, 2020, 18(33): 35-36, 49.
[4] 付德义, 李婷, 王安庆, 等. 风浪耦合作用下海上风电机组载荷特性研究[J]. 太阳能学报, 2021, 42(9): 256-262.
FU D Y, LI T, WANG A Q, et al.Research on load characteristics of offshore wind turbine coupling with wind and wave[J]. Acta energiae solaris sinica, 2021, 42(9): 256-262.
[5] 张天翼, 李昕, 王文华. 地震、风、浪作用下融合海水养殖的海上风力机耦合响应机理研究[J]. 太阳能学报, 2022, 43(10): 243-251.
ZHANG T Y, LI X, WANG W H.Research of coupling mechanismes of offshore wind turbine integrated with mariculture under earthquake, wind and wave loads[J]. Acta energiae solaris sinica, 2022, 43(10): 243-251.
[6] 林逸凡, 杨梓豪, 刘玉飞, 等. 中国沿海风电施工窗口期及功效分析[J]. 太阳能学报, 2023, 44(1): 273-280.
LI Y F, YANG Z H, LIU Y F, et al.Analysis of weather window and construction efficiency for wind power development in offshore China[J]. Acta energiae solaris sinica, 2023, 44(1): 273-280.
[7] API RP 2A-WSD-2014, Planning, designing, and constructing fixed offshore platforms: working stress design[S].
[8] DNV-RP-C205, Environmental conditions and environmental loads[S].
[9] DNVGL-ST-0437, Loads and site conditions for wind turbines[S].
[10] ABS-176, Guide for building and classing: bottom-founded offshore wind turbines[S].
[11] GD 27—2021, 海上风力发电机组认证指南[S].
GD 27—2021, Guide for offshore wind turbine certification[S].
[12] BV NI691, Environmental conditions, loads and induced responses of marione units[S].
[13] MORISON J R, JOHNSON J W, SCHAAF S A.The force exerted by surface waves on piles[J]. Journal of petroleum technology, 1950, 2(5): 149-154.
[14] SARPKAYA T, STORM M.In-line force on a cylinder translating in oscillatory flow[J]. Applied ocean research, 1985, 7(4): 188-196.
[15] MA R J, LI G X, ZHAO D, et al.Experimental study of wave forces on vertical cylinders in shallow waters[C]//ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. 2007, San Diego, California, USA, 2009: 45-48.
[16] 刘梅梅, 包胜利, 于通顺, 等. 海上风电复合筒基波浪荷载试验研究[J]. 水利水电技术(中英文), 2021, 52(9): 182-189.
LIU M M, BAO S L, YU T S, et al.Experimental investigation of wave loads on the novel composite bucket foundation of offshore wind turbine[J]. Water resources and hydropower engineering, 2021, 52(9): 182-189.
[17] KIM H J, LEE K S, JANG B S.A linearization coefficient for Morison force considering the intermittent effect due to free surface fluctuation[J]. Ocean engineering, 2018, 159: 139-149.
[18] FENG X, TAYLOR P H, DAI S, et al.Experimental investigation of higher harmonic wave loads and moments on a vertical cylinder by a phase-manipulation method[J]. Coastal engineering, 2020, 160: 103747.
[19] OEDigital. China's Dajin to Build Monopiles for Moray West Offshore Wind Farm in UK[EB/OL]. (2022-06-06)[2023-08-10]. https://www.oedigital.com/news/497080-china-s-dajin-to-build-monopiles-for-moray-west-offshore-wind-farm-in-uk.
[20] WOLFRAM J, NAGHIPOUR M.On the estimation of Morison force coefficients and their predictive accuracy for very rough circular cylinders[J]. Applied ocean research, 1999, 21(6): 311-328.
[21] ISAACSON M, BALDWIN J, NIWINSKI C.Estimation of drag and inertia coefficients from random wave data[J]. Journal of offshore mechanics and arctic engineering, 1991, 113(2): 128-136.
[22] RAED K, GUEDES SOARES C.Variability effect of the drag and inertia coefficients on the Morison wave force acting on a fixed vertical cylinder in irregular waves[J]. Ocean Engineering, 2018, 159: 66-75.
[23] DEAN R G.Methodology for evaluating suitability of wave and wave force data for determining drag and inertia coefficient[C]//Behaviour of Offshore Structures: Proceedings of the First International Conference: BOSS'76. Trondheim, Norway, 1976.
PDF(1103 KB)

Accesses

Citation

Detail

Sections
Recommended

/