RESEARCH ON HYDRODYNAMIC CHARACTERISTICS OF WIND TURBINE WITH HEAVE PLATE UNDER WIND AND WAVE COUPLING

Guo Xinpeng, Sun Chuanzong, Shan Guangkun, Jia Li'na

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 397-406.

PDF(2820 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2820 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 397-406. DOI: 10.19912/j.0254-0096.tynxb.2023-1353

RESEARCH ON HYDRODYNAMIC CHARACTERISTICS OF WIND TURBINE WITH HEAVE PLATE UNDER WIND AND WAVE COUPLING

  • Guo Xinpeng1, Sun Chuanzong1, Shan Guangkun1, Jia Li'na2
Author information +
History +

Abstract

Research on an edge type heave plate to improve the hydrodynamic characteristics of the unit and stability of the unit. In the study, taking an 5 MW-CSC floating wind turbine as object, the overall dynamic responses under multiple parameters of edge heave plate widths and thicknesses were calculated utilizing by AQWA and FAST. On the basis, the characteristics were compared. The study show that, it has significant effect on peak RAO and frequency when changing the structural parameters of heave plate, while the influence on the surge RAO as well as frequency is relatively small. For the given model, further research finds that the stability performance is optimal when the width and thickness of the heave plate are in the range of 3 m and 1 m, respectively. The article provides a reference method for the design of floating wind turbine inclusive with heavy plate damping structure.

Key words

offshore wind turbines / dynamic response / stability / heave plate / wind-wave coupling

Cite this article

Download Citations
Guo Xinpeng, Sun Chuanzong, Shan Guangkun, Jia Li'na. RESEARCH ON HYDRODYNAMIC CHARACTERISTICS OF WIND TURBINE WITH HEAVE PLATE UNDER WIND AND WAVE COUPLING[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 397-406 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1353

References

[1] 丁勤卫, 李春, 周国龙, 等. 陆海风力机动态响应对比[J]. 动力工程学报, 2016, 36(1): 65-73.
DING Q W, LI C, ZHOU G L, et al.Comparison of dynamic response between stationary and floating wind turbines[J]. Journal of Chinese Society of Power Engineering, 2016, 36(1): 65-73.
[2] TIAN H N, SOLTANI M N, NIELSEN M E.Review of floating wind turbine damping technology[J]. Ocean engineering, 2023, 278: 114365.
[3] 丁勤卫, 李春, 袁伟斌, 等. 风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响[J]. 中国电机工程学报, 2019, 39(4): 1113-1127.
DING Q W, LI C, YUAN W B, et al.Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effects of wind and wave[J]. Proceedings of the CSEE, 2019, 39(4): 1113-1127.
[4] 叶舟, 张俊伟, 周国龙, 等. 垂荡板对漂浮式风力机水动力特性的研究[J]. 太阳能学报, 2019, 40(1): 229-236.
YE Z, ZHANG J W, ZHOU G L, et al.Research on hydrodynamic characteristics of the floating wind turbine with heave plate[J]. Acta energiae solaris sinica, 2019, 40(1): 229-236.
[5] CERMELLI C A, RODDIER D G, BUSSO C C.MINIFLOAT: a novel concept of minimal floating platform for marginal field development[J]. Proceedings of the international offshore and polar engineering conference, 2004: 538-545.
[6] NIELSEN F G, HANSON T D, SKAARE B.Integrated dynamic analysis of floating offshore wind turbines[C]//Volume 1: Offshore Technology; Offshore Wind Energy; Ocean Research Technology; LNG Specialty Symposium,Hamburg, Germany, 2006.
[7] KWANG H L.Responses of floating wind turbines to wind and wave excitation[D]. Massachusetts: Massachusetts Institute of Technology, 2005.
[8] MA Y, HU Z Q, XIAO L F.Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine[J]. Journal of hydrodynamics, ser B, 2015, 26(6): 865-874.
[9] 余建星, 景雪娇, 唐友刚. 10 MW半潜浮式风机阻尼结构研究[J]. 海洋技术学报, 2022, 41(2): 119-126.
YU J X, JING X J, TANG Y G.Analysis on damping structure of 10 MW semi-submersible floating wind turbine[J]. Journal of ocean technology, 2022, 41(2): 119-126.
[10] 何鸿圣, 李春, 王博, 等. 2种海上风力机漂浮式风电场平台动态响应对比[J]. 太阳能学报, 2023, 44(4): 1-8.
HE H S, LI C, WANG B, et al.Comparison of dynamic response of two floating wind farm platforms for offshore wind turbines[J]. Acta energiae solaris sinica, 2023, 44(4): 1-8.
[11] YANG Y, BASHIR M, MICHAILIDES C, et al.Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable energy, 2020, 161: 606-625.
[12] LUAN C Y, GAO Z, MOAN T.Design and analysis of a braceless steel 5-MW semi-submersible wind turbine[C]//Volume 6: Ocean Space Utilization; Ocean Renewable Energy, Busan, South Korea, 2016.
[13] 杜宇, 王凯, 高子予. 海上风电半潜式基础初步选型Pareto-Optimal评价[J]. 海洋工程, 2022, 40(4): 121-128.
DU Y, WANG K, GAO Z Y.Pareto-Optimal evaluation for the preliminary design of semi-submersible floating offshore wind turbine substructure[J]. The ocean engineering, 2022, 40(4): 121-128.
[14] 杜宇, 王凯, 李飞鹏. 半潜漂浮式风机垂荡板附加质量研究[J]. 船舶工程, 2023, 45(6): 167-172.
DU Y, WANG K, LI F P.Study on added mass for semi-submersible floating offshore wind turbine heave plates[J]. Ship engineering, 2023, 45(6): 167-172.
[15] 蔡新, 张洪建, 王浩, 等. 面向深远海的新型海上风力机浮式平台水动力性能研究[J]. 中国电机工程学报, 2022, 42(12): 4339-4352.
CAI X, ZHANG H J, WANG H, et al.Research on the hydrodynamic performance of a novel floating platform of the offshore wind turbine in deep water[J]. Proceedings of the CSEE, 2022, 42(12): 4339-4352.
[16] ZHANG S N, ISHIHARA T.Numerical study of distributed hydrodynamic forces on a circular heave plate by large-eddy simulations with volume of fluid method[J]. Ships and offshore structures, 2020, 15(6): 574-586.
[17] JIANG Y C, HU G Q, ZONG Z, et al.Influence of an integral heave plate on the dynamic response of floating offshore wind turbine under operational and storm conditions[J]. Energies, 2020, 13(22): 6122.
[18] 肖昌水. 海上浮式风机气动载荷及刚-柔耦合动力响应研究[D]. 天津: 天津大学, 2018.
XIAO C S.Study on aerodynamic load and rigid-flexible coupling dynamic response of offshore floating fan[D]. Tianjin: Tianjin University, 2018.
[19] 朱晓洋. 海上浮式风机在极端海况下的响应和优化研究[D]. 广州: 华南理工大学, 2020.
ZHU X Y.Study on response and optimization of offshore floating fan under extreme sea conditions[D]. Guangzhou: South China University of Technology, 2020.
[20] GENG B L, TENG B, NING D Z.A time-domain analysis of wave force on small-scale cylinders of offshore structures[J]. Journal of marine science and technology, 2010, 18(6): 875-882.
[21] DNV-RP-C205. Environmental conditions and environmental loads[S]. Veritas D N, 2010.
[22] 黄致谦, 丁勤卫, 李春. 新型垂荡板对漂浮式风力机半潜式平台垂荡运动的抑制效果研究[J]. 动力工程学报, 2019, 39(5): 402-408.
HUANG Z Q, DING Q W, LI C.Research on heave motion inhibition for the semi-submersible platform of floating wind turbines with new heave plates[J]. Journal of Chinese Society of Power Engineering, 2019, 39(5): 402-408.
[23] 黄承庚, 陈莉, 张欢, 等. 风浪耦合作用下5 MW阶梯立柱式海上风机动态响应研究[J]. 中国电机工程学报, 2022, 42(12): 4477-4487.
HUANG C G, CHEN L, ZHANG H, et al.Study on dynamic response of stepped spar-type platform of 5 MW floating wind turbine under wind-wave coupling[J]. Proceedings of the CSEE, 2022, 42(12): 4477-4487.
[24] JONKMAN J.TurbSim User's Guide v2.00.00[R]. Golden: National Renewable Energy Laboratory, 2016.
[25] 李文魁, 张博, 田蔚风, 等. 一种波浪中的船舶动力定位运动建模方法研究[J]. 仪器仪表学报, 2007, 28(6): 1051-1054.
LI W K, ZHANG B, TIAN W F, et al.Method of ship motion modeling with dynamic positioning in waves[J]. Chinese journal of scientific instrument, 2007, 28(6): 1051-1054.
[26] 邹丽, 曲世达, 姜宜辰, 等. 新型海上风电浮式平台水动力性能研究[C]//第二十九届全国水动力学研讨会论文集, 镇江, 中国, 2018: 197-204.
ZHOU L, QU S D, JIANG Y C, et al.Study on hydrodynamic performance of novel offshore wind turbine floating platform[C]//Proceedings of the 29th National Congress on Hydrodynamics. Zhenjiang, China, 2018: 197-204.
[27] 张立, 丁勤卫, 李春, 等. 风载荷对不同海上浮式风力机平台运动特性影响对比研究[J]. 太阳能学报, 2021, 42(9): 302-311.
ZHANG L, DING Q W, LI C, et al.Comparative study on effects of wind load on motion characteristics of different offshore floating wind turbine platforms[J]. Acta energiae solaris sinica, 2021, 42(9): 302-311.
PDF(2820 KB)

Accesses

Citation

Detail

Sections
Recommended

/