WIND POWER INTEGRATED GRID CASCADE FAULT PREVENTION STRATEGY CONSIDERING VULNERABLE BRANCH SCREENING

Deng Huiqiong, Zhong Yunheng, Huang Jing

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 544-555.

PDF(2291 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2291 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 544-555. DOI: 10.19912/j.0254-0096.tynxb.2023-1359

WIND POWER INTEGRATED GRID CASCADE FAULT PREVENTION STRATEGY CONSIDERING VULNERABLE BRANCH SCREENING

  • Deng Huiqiong1,2, Zhong Yunheng1,2, Huang Jing1,2
Author information +
History +

Abstract

This paper presents a wind power integrated grid cascade fault prevention strategy that considers vulnerable branch screening, targeting the cascade fault phenomenon caused by branch faults in wind power systems. Firstly, a branch trip probability model and system safety indicators are constructed. Probability density functions and normal distribution functions are introduced to assess the vulnerability of various branches in the wind power system, thereby the serious initial fault branches are screened. Then, based on the vulnerability ranking of branches, one or several branches with serious impacts on grid operational safety are selected, and the expected accident set is established. Finally, a cascade fault prevention and control model is developed, which takes into account both system safety indicators and prioritized wind power absorption. The model is solved using a particle swarm optimization algorithm. The simulation analysis is conducted based on IEEE-14 and IEEE-39 node systems, and the results indicate that the proposed wind power integrated grid cascade fault prevention strategy, considering vulnerable branches, not only prioritizes wind power absorption but also ensures a sufficient security margin for the wind power system.

Key words

wind power / cascading failures / comprehensive vulnerability path / new energy / preventive control / risk identification

Cite this article

Download Citations
Deng Huiqiong, Zhong Yunheng, Huang Jing. WIND POWER INTEGRATED GRID CASCADE FAULT PREVENTION STRATEGY CONSIDERING VULNERABLE BRANCH SCREENING[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 544-555 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1359

References

[1] 樊陈, 姚建国, 张琦兵, 等. 英国“8·9” 大停电事故振荡事件分析及思考[J]. 电力工程技术, 2020, 39(4): 34-41.
FAN C, YAO J G, ZHANG Q B, et al.Reflection and analysis for oscillation of the blackout event of 9 August 2019 in UK[J]. Electric power engineering technology, 2020, 39(4): 34-41.
[2] 易俊, 卜广全, 郭强, 等. 巴西“3·21” 大停电事故分析及对中国电网的启示[J]. 电力系统自动化, 2019, 43(2): 1-6.
YI J, BU G Q, GUO Q, et al.Analysis on blackout in Brazilian power grid on March 21, 2018 and its enlightenment to power grid in China[J]. Automation of electric power systems, 2019, 43(2): 1-6.
[3] 屠竞哲, 何剑, 安学民, 等. 巴基斯坦“2023.1.23”大停电事故分析及启示[J]. 中国电机工程学报, 2023, 43(14): 5319-5329.
TU J Z, HE J, AN X M, et al.Analysis and implications of the major power outageincident in Pakistan on January 23, 2023[J]. Proceedings of the CSEE, 2023, 43(14): 5319-5329.
[4] 谭玉东, 李欣然, 蔡晔, 等. 基于动态潮流的电网连锁故障模型及关键线路识别[J]. 中国电机工程学报, 2015, 35(3): 615-622.
TAN Y D, LI X R, CAI Y, et al.Modeling cascading failures in power grid based on dynamic power flow and vulnerable line identification[J]. Proceedings of the CSEE, 2015, 35(3): 615-622.
[5] 甘国晓. 电力系统连锁故障分析与紧急控制研究[D]. 杭州: 浙江大学, 2019.
GAN G X.Cascading failure analysis and emer-gency control of power system[D]. Hangzhou: Zhejiang University, 2019.
[6] 李丽华. 基于线路指标熵识别电网脆弱环节的研究[D]. 北京: 华北电力大学, 2018.
LI L H.Research on vulnerability identification of power grid based on line index entropy[D]. Beijing: North China Electric Power University, 2018.
[7] 陈卓, 李华强, 周柯宇, 等. 考虑风电场影响的电力系统支路脆弱性评估[J]. 电力系统及其自动化学报, 2014, 26(2): 37-43.
CHEN Z, LI H Q, ZHOU K Y, et al.Vulnerable branch assessment of power system considering wind farm effects[J]. Proceedings of the CSU-EPSA, 2014, 26(2): 37-43.
[8] 陈绍南, 梁朔, 李珊, 等. 基于电气中心性指标的电网脆弱性评估[J]. 供用电, 2021, 38(8): 70-76.
CHEN S N, LIANG S, LI S, et al.Power grid vulnerability evaluation based on electrical centrality indicators[J]. Distribution & utilization, 2021, 38(8): 70-76.
[9] 吴晨, 韩海腾, 祁万春, 等. 基于改进线路效能的电网脆弱性辨识方法研究[J]. 电力工程技术, 2018, 37(5): 64-68.
WU C, HAN H T, QI W C, et al.Vulnerability identification in power systems based on an improved line-efficiency evaluation approach[J]. Electric power engineering technology, 2018, 37(5): 64-68.
[10] 赵任光, 刘群英, 陈树恒, 等. 风电场出力随机扰动下的电网概率脆弱性评估[J]. 现代电力, 2018, 35(5): 41-48.
ZHAO R G, LIU Q Y, CHEN S H, et al.The evaluation on probability vulnerability of power grid considering stochastic disturbance of wind farm[J]. Modern electric power, 2018, 35(5): 41-48.
[11] 李炅聪, 施嘉昊, 武庆, 等. 含风电接入的电力系统脆弱性分析与量化评估[J]. 电网与清洁能源, 2020, 36(1): 46-54.
LI J C, SHI J H, WU Q, et al.Vulnerability analysis and quantitative evaluation of the power system containing wind power[J]. Power system and clean energy, 2020, 36(1): 46-54.
[12] 毕贵红, 黄泽, 赵四洪, 等. 基于混合分解和PCG-BiLSTM的风速短期预测[J]. 太阳能学报, 2024, 45(1): 159-170.
BI G H, HUANG Z, ZHAO S H, et al.Short-term prediction of wind speed based on hybrid decomposition and pcg-bilstm[J]. Acta energiae solaris sinica, 2024, 45(1): 159-170.
[13] 杨欢, 邹斌. 含相关性随机变量的概率最优潮流问题的蒙特卡罗模拟方法[J]. 电力系统保护与控制, 2012, 40(19): 110-115.
YANG H, ZOU B.A Monte Carlo simulation method for probabilistic optimal power flow with correlated stochastic variables[J]. Power system protection and control, 2012, 40(19): 110-115.
[14] HASHISH M S, HASANIEN H M, JI H R, et al.Monte Carlo simulation and a clustering technique for solving the probabilistic optimal power flow problem for hybrid renewable energy systems[J]. Sustainability, 2023, 15(1): 783.
[15] SUN W G, ZAMANI M, ZHANG H T, et al.Probabilistic optimal power flow with correlated wind power uncertainty via Markov chain quasi-Monte-Carlo sampling[J]. IEEE transactions on industrial informatics, 2019, 15(11): 6058-6069.
[16] 晁晨栩, 郑晓冬, 邰能灵, 等. 针对新能源场站送出线两相短路的负序阻抗重构距离保护[J]. 电力系统自动化, 2023, 47(22): 101-109.
CHAO C X, ZHENG X D, TAI N L, et al.Distance protection based on negative-sequence impedance reconstruction for phase-to-phase short circuit of renewable power plant transmission lines[J]. Automation of electric power systems, 2023, 47(22): 101-109.
[17] 桂小智, 宋国兵, 常鹏, 等. 适用于新能源并网系统的距离保护方法[J]. 电力工程技术, 2023, 42(3): 250-257.
GUI X Z, SONG G B, CHANG P, et al.Distance protection method applicable to renewable energy grid-connected systems[J]. Electric power engineering technology, 2023, 42(3): 250-257.
[18] 魏琳洹, 尹常永. 距离保护整定计算研究综述[J]. 电子世界, 2021(2): 17-18.
WEI L H, YIN C Y.Summary of research on setting calculation of distance protection[J]. Electronics world, 2021(2): 17-18.
[19] 王广学, 俸玲, 李晓娟. 电力系统输电线路接地距离保护整定计算研究[J]. 电网技术, 2002, 26(2): 49-53.
WANG G X, FENG L, LI X J.Research on setting calculation of grounding distance protection of transmission line[J]. Power system technology, 2002, 26(2): 49-53.
[20] 邓慧琼. 电网连锁故障预测分析方法及其应用研究[D]. 北京: 华北电力大学, 2007.
DENG H Q.Research on forecast method of power system cascading outages and it's application[D]. Beijing: North China Electric Power University, 2007.
[21] 程瑜, 朱瑾, 彭冬, 等. 提升新能源消纳含风险度量的输-储优化规划[J]. 太阳能学报, 2023, 44(10): 504-513.
CHENG Y, ZHU J, PENG D, et al.Optimization planning of transmission line and energy storage for consumption capacity improvement of renewable energy with risk assessment[J]. Acta energiae solaris sinica, 2023, 44(10): 504-513.
[22] 李飞, 姚敏东, 李靖. 计及风电条件风险价值的鲁棒柔性超前调度[J]. 太阳能学报, 2022, 43(7): 356-365.
LI F, YAO M D, LI J.Robust flexible look-ahead dispatch considering CVAR of wind power[J]. Acta energiae solaris sinica, 2022, 43(7): 356-365.
[23] 胡迪鹤. 高等概率论及其应用[M]. 北京: 高等教育出版社, 2008.
HU D H.Higher probability theory and its application[M]. Beijing: Higher Education Press, 2008.
[24] 邓慧琼, 王晓铭, ABDALAZIZ ALTAYEB IBRAHIM OMER, 等. 计及网损的电网连锁故障预防方法[J]. 福建工程学院学报, 2022, 20(4): 369-372, 396.
DENG H Q, WANG X M, OMER A, et al.Prevention method of network interlocking failure considering network loss[J]. Journal of Fujian University of Technology, 2022, 20(4): 369-372, 396.
PDF(2291 KB)

Accesses

Citation

Detail

Sections
Recommended

/