The advancement of large-scale offshore wind power holds paramount importance in optimizing energy infrastructure, promoting sustainable energy distribution, and achieving the “double carbon” goal. In this study, we leverage high-resolution spatial and temporal wind energy resource databases, geospatial planning data, and wind turbine data to conduct a comprehensive assessment of offshore wind energy reserves. Our research involves a thorough review of technical methodologies and processes for evaluating offshore wind energy reserves, resulting in the preliminary establishment of a comprehensive evaluation method system for macroscopic site selection of offshore wind farms. Furthermore, we use Geographic Information System (GIS) tools to estimate wind energy reserves in the Bohai Sea and South China Sea. The findings reveal that the South China Sea boasts abundant wind energy resources, characterized by an annual average wind speed ranging from 6.35 to 9.75 m/s. In contrast, the Bohai Sea experiences comparatively lower wind speeds, with an annual average wind speed ranging from 6.30 to 7.70 m/s. Notably, both sea areas exhibit significant untapped potential for wind energy development. At a height of 100 meters in the Bohai Sea, the total exploitable capacity of wind energy resources is estimated at a remarkable 526.8 GW. This capacity is composed of 353 GW for offshore wind energy technology development and 174 GW for far-reaching sea wind energy technology advancement. Likewise, in the South China Sea, the research identifies substantial technical development potential. Specifically, Guangdong and Hainan provinces demonstrate capacities of 540.8 and 506.0 GW, respectively, at a 100 m height. These capacities include nearshore potentials of 177.7 and 41.9 GW, as well as deep-sea potentials of 363.1 and 464.2 GW. In the Beibu Gulf, our study unveils a wind energy resource potential of 63.3 GW at a 100 m height. This potential comprises 59.9 GW for offshore areas and 3.4 GW for deep-sea regions. Nevertheless, as of the end of 2021, the installed offshore wind power capacity in China’s Bohai Sea, South China Sea, and Beibu Gulf provinces represents only 1.3% of the technically exploitable capacity. This research yields valuable data, offering essential support for the development and utilization of offshore wind energy resources. The results underscore the substantial room for expansion in offshore wind power capacity in these regions, a critical step towards achieving energy optimization and the “double carbon” objectives.
Key words
offshore wind farms /
wind energy resource /
numerical simulation /
macroscopic site selection /
reserves
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 严成亮, 马军, 陈建中, 等. 海上风电发展现状及趋势分析[J]. 电力科技与环保, 2019, 35(1): 1-6.
YAN C L, MA J, CHEN J Z, et al.Development status and trend analysis of offshore wind power[J]. Electric power technology and environmental protection, 2019, 35(1): 1-6.
[2] CHEN Z, SONG Q.A review of offshore wind farm site selection methods: opportunities and challenges[J]. Renewable and sustainable energy reviews, 2018, 94: 39-51.
[3] 秦海岩. 中国风电产业地图2021[R]. 北京: 中国可再生能源学会风能专业委员会, 2022: 55-60.
QIN H Y.China Wind Power Industry Map 2021[R]. Beijing: Wind Energy Professional Committee, Chinese Renewable Energy Society, 2022: 55-60.
[4] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.
LIU J Z, MA L F, WANG Q H, et al.Offshore wind power supports China’s energy transition[J]. Strategic study of CAE, 2021, 23(1): 149-159.
[5] 陈卓, 郭军红, 亢朋朋, 等. 5套再分析资料在阿勒泰地区风资源评估中的适用性研究[J]. 太阳能学报, 2023, 44(4): 60-66.
CHEN Z, GUO J H, KANG P P, et al.Applicability of five sets of reanalysis data in wind resource assessmeant in altay prefecture[J]. Acta energiae solaris sinica, 2023, 44(4): 60-66.
[6] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418.
ZHU R, WANG Y, XIANG Y, et al.Stydy on climate characteristics and development potential of wind energy resources in China[J]. Acta energiae solaris sinica, 2021, 42(6): 409-418.
[7] 李加林, 田鹏, 邵姝遥, 等. 中国东海区大陆海岸线数据集(1990-2015)[J]. 全球变化数据学报(中英文), 2019, 3(3): 252-258, 362-368.
LI J L, TIAN P, SHAO S Y, et al. East China Sea coastline dataset (1990-2015)[J]. Journal of global change data & discovery, 2019, 3(3): 252-258, 362-368.
[8] 蔡卫平, 郑文宣, 胡立达, 等. 海上风能资源评估及其开发利用研究综述[J]. 中国电力, 2018, 51(2): 23-28.
CAI W P, ZHENG W X, HU L D, et al.A review on assessment and utilization of offshore wind energy resources[J]. Electric power, 2018, 51(2): 23-28.
[9] 姜波, 丁杰, 方舣洲, 等. 涠洲岛海洋风能和波浪能资源评估[J]. 太阳能学报, 2023, 44(10): 461-466.
JIANG B, DING J, FANG Y Z, et al.Offshore wind energy and wave energy resource valuation in Weizhou island[J]. Acta energiae solaris sinica, 2023, 44(10): 461-466.
[10] WANG Y, CHAO Q C, ZHAO L, et al.Assessment of wind and photovoltaic power potential in China[J]. Carbon neutrality, 2022, 1(15): 417-426.
[11] 马敏, 刘燕平, 刘天一, 等. 中国沿海地区风能资源评估及其空间分布特征[J]. 可再生能源, 2016, 34(6): 767-773.
MA M, LIU Y P, LIU T Y, et al.Assessment of wind energy resources and their spatial distribution characteristics in the coastal areas of China[J]. Renewable energy, 2016, 34(6): 767-773.
[12] 张秀芝, 徐经纬. 中国近海的风能资源[J]. 风能产业, 2013, 7(1):16-21.
ZHANG X Z, XU J W.China’s offshore wind resources[J]. Wind energy industry, 2013, 7(1): 16-21.
[13] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].