ADDITIVE IMPROVES PERFORMANCE OF WIDE BANDGAP PEROVSKITE SOLAR CELLS

Li Zhuoxin, Feng Xuzheng, Chen Xianggang, Liu Xuepeng, Dai Songyuan, Cai Molang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 30-35.

PDF(2406 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2406 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 30-35. DOI: 10.19912/j.0254-0096.tynxb.2023-1386

ADDITIVE IMPROVES PERFORMANCE OF WIDE BANDGAP PEROVSKITE SOLAR CELLS

  • Li Zhuoxin, Feng Xuzheng, Chen Xianggang, Liu Xuepeng, Dai Songyuan, Cai Molang
Author information +
History +

Abstract

The effects of polysodium p-styrene sulfonate(PSS) on wide-bandgap perovskite films and devices are studied in this paper. The research of this paper shows that use of a polypodium PSS passivator can effectively improve the morphology, increase the crystallinity, and reduce the defect density of perovskite films, which are beneficial to inhibit the phase segregation of mixed-halide wide-bandgap perovskite films. Finally, the J-V test results show that the performance of the optimized wide-bandgap perovskite solar cell is significantly improved. In the wide bandgap perovskite solar cell with PSS, the open circuit voltage is up to 1.23 V, and the efficiency is up to 20.54%. Moreover, the stability of the encapsulated device is significantly improved after phase segregation being inhibited, and the efficiency remains 81.9% of the initial efficiency under continuous illumination for 500 h (N2 environment, 40 ℃).

Key words

perovskite solar cells / wide-band gap / crystallinity / defect passivation / phase segregation / performance

Cite this article

Download Citations
Li Zhuoxin, Feng Xuzheng, Chen Xianggang, Liu Xuepeng, Dai Songyuan, Cai Molang. ADDITIVE IMPROVES PERFORMANCE OF WIDE BANDGAP PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 30-35 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1386

References

[1] KIM M, JEONG J, LU H Z, et al.Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 2022, 375(6578): 302-306.
[2] FEI C B, LI N X, WANG M R, et al.Lead-chelating hole-transport layers for efficient and stable perovskite minimodules[J]. Science, 2023, 380(6647): 823-829.
[3] LUO X H, LIN X S, GAO F, et al.Recent progress in perovskite solar cells: from device to commercialization[J]. Science China chemistry, 2022, 65(12): 2369-2416.
[4] GUILLEMOLES J F, KIRCHARTZ T, CAHEN D, et al.Guide for the perplexed to the Shockley-Queisser model for solar cells[J]. Nature photonics, 2019, 13: 501-505.
[5] SHOCKLEY W, QUEISSER H J.Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.
[6] LI H, ZHANG W.Perovskite tandem solar cells: from fundamentals to commercial deployment[J]. Chemical reviews, 2020, 120(18): 9835-9950.
[7] WANG X L, YING Z Q, ZHENG J M, et al.Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion[J]. Nature communications, 2023, 14(1): 2166.
[8] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al.Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical science, 2015, 6(1): 613-617.
[9] KIM G Y, SENOCRATE A, YANG T Y, et al.Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition[J]. Nature materials, 2018, 17(5): 445-449.
[10] MUSCARELLA L A, EHRLER B.The influence of strain on phase stability in mixed-halide perovskites[J]. Joule, 2022, 6(9): 2016-2031.
[11] WEN J, ZHAO Y C, LIU Z, et al.Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells[J]. Advanced materials, 2022, 34(26): e2110356.
[12] BARKER A J, SADHANALA A, DESCHLER F, et al.Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films[J]. ACS energy letters, 2017, 2(6): 1416-1424.
[13] WEI J, WANG Q W, HUO J D, et al.Mechanisms and suppression of photoinduced degradation in perovskite solar cells[J]. Advanced energy materials, 2021, 11(3): 2002326.
[14] ZAI H C, MA Y, CHEN Q, et al.Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression[J]. Journal of energy chemistry, 2021, 63(12): 528-549.
[15] LI Z X, LI X, CHEN X G, et al.In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics[J]. Joule, 2023, 7(6): 1363-1381.
[16] TAO L, DU X Q, HU J F, et al.Stabilizing wide-bandgap halide perovskites through hydrogen bonding[J]. Science China chemistry, 2022, 65(8): 1650-1660.
[17] WANG L N, SONG Q, PEI F, et al.Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells[J].Advanced materials, 2022, 34(26): 2201315.
[18] LI Z X, LI X, WANG M C, et al.Enhanced photovoltaic performance via a bifunctional additive in tin-based perovskite solar cells[J]. ACS applied energy materials, 2022, 5(1): 108-115.
[19] TAN H R, CHE F L, WEI M Y, et al.Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites[J]. Nature communications, 2018, 9: 3100.
[20] WANG X B, SUN W H, TU Y G, et al.Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%[J]. Chemical engineering journal, 2022, 446: 137416.
[21] CHEN M Y, LIN J T, HSU C S, et al.Strongly coupled tin-halide perovskites to modulate light emission: tunable 550-640 nm light emission (FWHM 36-80 nm) with a quantum yield of up to 6.4[J]. Advanced materials, 2018, 30(20): e1706592.
[22] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[23] 杜林, 彭长涛, 唐宇, 等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报, 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica, 2022, 43(9): 73-77.
[24] 李毅, 朱俊, 张旭辉, 等. CH3NH3PbI3形貌对钙钛矿电池性能的影响研究[J]. 太阳能学报, 2019, 40(9): 2630-2635.
LI Y, ZHU J, ZHANG X H, et al.Investigation on morphology-photovoltaic property correlation in perovskite solar cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2630-2635.
PDF(2406 KB)

Accesses

Citation

Detail

Sections
Recommended

/