OPTICAL MODULATION OF SURFACE/INTERFACE OF PEROVSKITE SOLAR CELLS BASED ON MOTH EYE BIO-INSPIRED STRUCTURE

Shen Xiangqian, Han Fei, Jiang Sihan, Jiang Zhou, Zhou Hua

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 85-90.

PDF(2470 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2470 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 85-90. DOI: 10.19912/j.0254-0096.tynxb.2023-1404

OPTICAL MODULATION OF SURFACE/INTERFACE OF PEROVSKITE SOLAR CELLS BASED ON MOTH EYE BIO-INSPIRED STRUCTURE

  • Shen Xiangqian1, Han Fei1, Jiang Sihan1, Jiang Zhou1, Zhou Hua2
Author information +
History +

Abstract

The optical control characteristics of biomimetic moth-eye structures on the surface and interface of perovskite solar cells (PSCs) were systematically investigated using the Finite Difference Time Domain (FDTD) method and Rigorous Coupled Wave Analysis (RCWA), with the enhancement mechanisms analyzed through Equivalent Medium Theory (EMT). The results demonstrate that the introduction of moth-eye structures effectively breaks the interface limitations between materials, resulting in the refractive index to shift from adrupt change to gradient change. As a result, optical waves can pass through the interface between the two materials almost unhindered. With optimized regulation, the optical losses of the surface and interface decrease from the original 3.52% and 3.30% to 0.08% and 0.06%, respectively. Consequently, the photoelectric response performance of the cells is significantly enhanced, with an increase in energy conversion efficiency by 14.93% compared to planar cells.

Key words

perovskite solar cells / antireflection coatings / energy conversion efficiency / finite difference time domain method

Cite this article

Download Citations
Shen Xiangqian, Han Fei, Jiang Sihan, Jiang Zhou, Zhou Hua. OPTICAL MODULATION OF SURFACE/INTERFACE OF PEROVSKITE SOLAR CELLS BASED ON MOTH EYE BIO-INSPIRED STRUCTURE[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 85-90 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1404

References

[1] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[2] KIM J Y, LEE J W, JUNG H S, et al.High-efficiency perovskite solar cells[J]. Chemical reviews, 2020, 120(15): 7867-7918.
[3] 姚鑫, 丁艳丽, 张晓丹, 等. 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64(3): 145-152.
YAO X, DING Y L, ZHANG X D, et al.A review of the perovskite solar cells[J]. Acta physica sinica, 2015, 64(3): 145-152.
[4] LI N X, NIU X X, CHEN Q, et al.Towards commercialization: the operational stability of perovskite solar cells[J]. Chemical Society Reviews, 2020, 49(22): 8235-8286.
[5] XU C Y, HU W, WANG G, et al.Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells[J]. ACS Nano, 2020, 14(1): 196-203.
[6] 周生厚, 章文峰, 江雨童, 等. 加热和水处理共同调控PbI2薄膜形貌及其在钙钛矿太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(9): 78-82.
ZHOU S H, ZHANG W F, JIANG Y T, et al.Heating and water treatment jointly control morphology of PbI2 thin film and its application in perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 78-82.
[7] PARK J, KIM J, YUN H S, et al.Controlled growth of perovskite layers with volatile alkylammonium chlorides[J]. Nature, 2023, 616: 724-730.
[8] GREEN M A, DUNLOP E D, SIEFER G, et al.Solar cell efficiency tables (version 61)[J]. Progress in photovoltaics, 2023, 31(1): 3-16.
[9] WANG J F, LUO S Q, LIN Y, et al.Templated growth of oriented layered hybrid perovskites on 3D-like perovskites[J]. Nature communications, 2020, 11: 582.
[10] HE L, SU H Z, LI Z P, et al.Multiple function synchronous optimization by PbS quantum dots for highly stable planar perovskite solar cells with efficiency exceeding 23%[J]. Advanced functional materials, 2023, 33(17): 2213963.
[11] CHEN C, ZHENG S J, SONG H W.Photon management to reduce energy loss in perovskite solar cells[J]. Chemical Society Reviews, 2021, 50(12): 7250-7329.
[12] 赵颂, 周华, 王淑英, 等. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计[J]. 物理学报, 2022, 71(3): 330-336.
ZHAO S, ZHOU H, WANG S Y, et al.Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere[J]. Acta physica sinica, 2022, 71(3): 330-336.
[13] DUDEM B, HEO J H, LEEM J W, et al.CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers[J]. Journal of materials chemistry A, 2016, 4(20): 7573-7579.
[14] PEER A, BISWAS R, PARK J M, et al.Light management in perovskite solar cells and organic LEDs with microlens arrays[J]. Optics express, 2017, 25(9): 10704-10709.
[15] SCHMAGER R, HOSSAIN I M, SCHACKMAR F, et al.Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells[J]. Solar energy materials and solar cells, 2019, 201: 110080.
[16] 何鑫, 周伯川, 张耀举, 等. 微米-纳米分层阵列结构减反膜的制备[J]. 太阳能学报, 2021, 42(8): 146-152.
HE X, ZHOU B C, ZHANG Y J, et al.Preparation of micro-nano layered array structure anti-reflection film[J]. Acta energiae solaris sinica, 2021, 42(8): 146-152.
[17] CHOI J S, JANG Y W, KIM U, et al.Optically and mechanically engineered anti-reflective film for highly efficient rigid and flexible perovskite solar cells[J]. Advanced energy materials, 2022, 12(33): 2201520.
[18] 王岩岩, 钱敏, 蒋晓慧, 等. 超薄晶硅太阳电池表面介质纳米结构减反及陷光机理研究[J]. 太阳能学报, 2023, 44(7): 135-140.
WANG Y Y, QIAN M, JIANG X H, et al.Research on antireflection and light trapping properties for dielectric nanostructures on ultrathin crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2023, 44(7): 135-140.
[19] HAN K, CHANG C H.Numerical modeling of sub-wavelength anti-reflective structures for solar module applications[J]. Nanomaterials, 2014, 4(1): 87-128.
[20] SHEN X Q, WANG Z Y, WANGYANG P H, et al.Light harvesting in thin film solar cells via designing nanostructured geometries[J]. Optics communications, 2023, 545: 129624.
[21] FEDERICO L G.Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared[D]. California: UC Santa Barbara, 2015.
[22] KIM W, CHOI W.A novel parameter extraction method for the one-diode solar cell model[J]. Solar energy, 2010, 84(6): 1008-1019.
PDF(2470 KB)

Accesses

Citation

Detail

Sections
Recommended

/