MoO3 INTERFACE MODIFICATION IMPROVING PERFORMANCE OF BLADE COATED PEROVSKITE SOLAR CELLS

Guo Xin, Yao Xin, Liu Zugang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 101-106.

PDF(1867 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1867 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 101-106. DOI: 10.19912/j.0254-0096.tynxb.2023-1435

MoO3 INTERFACE MODIFICATION IMPROVING PERFORMANCE OF BLADE COATED PEROVSKITE SOLAR CELLS

  • Guo Xin, Yao Xin, Liu Zugang
Author information +
History +

Abstract

In this study, the influence of introducing MoO3 hole modification layer between hole transport layer Spiro-OMeTAD and Ag electrode on the photovoltaic performance of the blade-coated perovskite solar cell device was investigated. The mechanism was examined through a series of tests encompassing electrical conductivity measurement, steady-state photoluminescence spectra, contact angle with water, etc. The results of experiments and tests indicate that MoO3 can effectively improve hole transport capability and reduce interfacial resistance while protecting the underlying Spiro-OMeTAD and perovskite layers from water and oxygen degradation in the air. Based on MoO3 interface modification layers, the blade-coated perovskite solar cell device's photovoltaic conversion efficiency increases from 15.14% to 18.30%, especially the average fill factor rises from 60% to 76%. At the same time, the stability of devices is also improved, with the unpackaged device still maintaining 90% of it initial efficiency after 400 hours.

Key words

perovskite solar cells / molybdenum oxide / thermal vapor deposition coating / interface modification / hole transport / stability

Cite this article

Download Citations
Guo Xin, Yao Xin, Liu Zugang. MoO3 INTERFACE MODIFICATION IMPROVING PERFORMANCE OF BLADE COATED PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 101-106 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1435

References

[1] 郝彦忠, 栗靖琦, 钱近, 等. P3HT和Spiro-OMeTAD共混物为光活性层和空穴传输层的杂化太阳电池[J]. 太阳能学报, 2021, 42(12): 459-464.
HAO Y Z, LI J Q, QIAN J, et al.Blend of P3HT and Spiro-OMeTAD as photoactive layer and hole transport layer in hybrid solar cell[J]. Acta energiae solaris sinica, 2021, 42(12): 459-464.
[2] SUBBIAH A S, HALDER A, GHOSH S, et al.Inorganic hole conducting layers for perovskite-based solar cells[J]. The journal of physical chemistry letters, 2014, 5(10): 1748-1753.
[3] YE S Y, SUN W H, LI Y L, et al.CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%[J]. Nano letters, 2015, 15(6): 3723-3728.
[4] ROMBACH F M, HAQUE S A, MACDONALD T J.Lessons learned from Spiro-OMeTAD and PTAA in perovskite solar cells[J]. Energy & environmental science, 2021, 14(10): 5161-5190.
[5] WANG S, HUANG Z H, WANG X F, et al.Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells[J]. Journal of the American Chemical Society, 2018, 140(48): 16720-16730.
[6] KIM S G, LEE S H, YANG I S, et al.Effect of fluorine substitution in a hole dopant on the photovoltaic performance of perovskite solar cells[J]. ACS energy letters, 2022, 7(2): 741-748.
[7] SCHLOEMER T H, CHRISTIANS J A, LUTHER J M, et al.Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability[J]. Chemical science, 2019, 10(7): 1904-1935.
[8] SARVARI H, WANG X H, WANG Y F, et al.Photovoltaic performance of lead-iodide perovskite solar cells fabricated under ambient air conditions with HTM solution excluding LiTFSI[J]. IEEE journal of photovoltaics, 2018, 8(4): 1051-1057.
[9] BOYD C C, CHEACHAROEN R, LEIJTENS T, et al.Understanding degradation mechanisms and improving stability of perovskite photovoltaics[J]. Chemical reviews, 2019, 119(5): 3418-3451.
[10] DING C Z, YIN L, ZHANG L P, et al.Revealing the mechanism behind the catastrophic failure of n-i-p type perovskite solar cells under operating conditions and how to suppress it[J]. Advanced functional materials, 2021, 31(40): 2103820.
[11] GONG Y S, DONG Y M, ZHAO B, et al.Diverse applications of MoO3 for high performance organic photovoltaics: fundamentals, processes and optimization strategies[J]. Journal of materials chemistry A, 2020, 8(3): 978-1009.
[12] 谷书辉, 李宁, 黄志平, 等. 衬底温度对MoOx空穴传输层的影响研究[J]. 太阳能学报, 2020, 41(7): 136-141.
GU S H, LI N, HUANG Z P, et al.Study of substrate temperature effecting on MoOx hole transmission layer[J]. Acta energiae solaris sinica, 2020, 41(7): 136-141.
[13] HU R, XIAO Z J, LIU Y R, et al.Photoelectric conversion and device stability of PM6:PY-IT solar cells based on a water solution-processed MoO3 hole transport layer[J]. ACS applied materials & interfaces, 2023, 15(23): 28321-28331.
[14] 张海川, 王康旭, 黄跃龙, 等. 氧化钼在半透明双面钙钛矿太阳电池中的应用[J]. 太阳能学报, 2021, 42(9): 120-124.
ZHANG H C, WANG K X, HUANG Y L, et al.Application of molybdenum oxide in semi-transparent bifacial perovskite solar cells[J]. Acta energiae solaris sinica, 2021, 42(9): 120-124.
[15] WANG C Y, SU Z H, CHEN L, et al.MoO3 doped PTAA for high-performance inverted perovskite solar cells[J]. Applied surface science, 2022, 571: 151301.
[16] SEO S, AKINO K, NAM J S, et al.Multi-functional MoO3 doping of carbon-nanotube top electrodes for highly transparent and efficient semi-transparent perovskite solar cells[J]. Advanced materials interfaces, 2022, 9(11): 2101595.
[17] KANG D H, PARK N G.On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis[J]. Advanced materials, 2019, 31(34): 1805214.
PDF(1867 KB)

Accesses

Citation

Detail

Sections
Recommended

/