STUDY ON THREE-DIMENSIONAL STALL MODEL OF WIND TURBINE BLADES BASED ON NEURAL NETWORKS

Dai Liping, Zhang Ze'neng, Cong Longfu, Chang Ning, Zhan Peng, Wang Chao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 53-59.

PDF(1529 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1529 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 53-59. DOI: 10.19912/j.0254-0096.tynxb.2023-1491

STUDY ON THREE-DIMENSIONAL STALL MODEL OF WIND TURBINE BLADES BASED ON NEURAL NETWORKS

  • Dai Liping1, Zhang Ze'neng1, Cong Longfu1, Chang Ning1, Zhan Peng2, Wang Chao2
Author information +
History +

Abstract

In this paper the flow field of wind turbine Phase Ⅵ under various operating conditions are calculated via CFD method . The three-dimensional aerodynamic data such as attack angle, lift force and drag force are extracted using the reverse blade element momentum theory method. Based on the above data, a BP neural network correction model is established with circumferential speed ratio, solidity, attack angle, twist angle, and two-dimensional aerodynamic parameters as the input parameters and three-dimensional aerodynamic performance parameters as the output parameters. The error between the predicted lift resistance coefficient of the BP model and the result obtained from CFD calculation is within 5%. The model combining blade momentum element theory with BP neutral network is selected to calculate the aerodynamic performance of Phase Ⅵ wind turbine, and the results showed that it can predict more accurately compared with original BEM method.

Key words

wind turbines / aerodynamic stalling / rotational flow / separation / angle of attack / neural networks

Cite this article

Download Citations
Dai Liping, Zhang Ze'neng, Cong Longfu, Chang Ning, Zhan Peng, Wang Chao. STUDY ON THREE-DIMENSIONAL STALL MODEL OF WIND TURBINE BLADES BASED ON NEURAL NETWORKS[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 53-59 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1491

References

[1] 杜朝辉. 旋转对风力涡轮叶片三维边界层影响的数值计算[J]. 太阳能学报, 1999, 20(3): 251-258.
DU Z H.Effect of rotation on blade boundary layer of wind turbine[J]. Acta energiae solaris sinica, 1999, 20(3): 251-258.
[2] 伍艳, 王同光. 三维旋转效应对桨叶气动特性影响的计算[J]. 空气动力学学报, 2006, 24(2): 200-204.
WU Y, WANG T G.Prediction of three-dimensional rotational effect on blade aerodynamic characteristics[J]. Acta aerodynamica sinica, 2006, 24(2): 200-204.
[3] 朱呈勇, 王同光, 邵涛. 水平轴风力机三维旋转效应数值模拟研究[J]. 太阳能学报, 2019, 40(6): 1747-1755.
ZHU C Y, WANG T G, SHAO T.Investigation into three-dimensional rotational effect on hawt with numerical simulations[J]. Acta energiae solaris sinica, 2019, 40(6): 1747-1755.
[4] 赵丹平, 徐宝清. 风力机设计理论及方法[M]. 北京: 北京大学出版社, 2012: 127-128.
ZHAO D P, XU B Q.Theory and Method of Wind Turbine Design[M]. Beijing: Peking University Press, 2012: 127-128.
[5] 杜朝辉. 水平轴风力涡轮设计与性能预估方法的三维失速延迟模型: Ⅱ.模型建立及应用[J]. 太阳能学报, 2000, 21(1): 1-6.
DU Z H.A 3-d stall-delay model for hwat performance prediction: Ⅱ model and its applications[J]. Acta energiae solaris sinica, 2000, 21(1): 1-6.
[6] CHAVIAROPOULOS P K, HANSEN M O L. Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D navier-stokes solver[J]. Journal of fluids engineering, 2000, 122(2): 330-336.
[7] HU D M, OUYANG H, DU Z H.A study on stall-delay for horizontal axis wind turbine[J]. Renewable energy, 2006, 31(6): 821-836.
[8] LEE H M, WU Y H.An experimental study of stall delay on the blade of a horizontal-axis wind turbine using tomographic particle image velocimetry[J]. Journal of wind engineering and industrial aerodynamics, 2013, 123: 56-68.
[9] 张蕴宁, 叶舟, 李春. 基于改进型升力面自由涡尾迹法的风力机性能研究[J]. 太阳能学报, 2017, 38(5): 1316-1323.
ZHANG Y N, YE Z, LI C.Wind turbine aerodynamic performance simulation based on improved lifting surface free wake method[J]. Acta energiae solaris sinica, 2017, 38(5): 1316-1323.
[10] BANGGA G, HUTOMO G, SYAWITRI T, et al.Enhancing BEM simulations of a stalled wind turbine using a 3D correction model[J]. Journal of physics: conference series, 2018, 974: 012020.
[11] YU G H, SHEN X, ZHU X C, et al.An insight into the separate flow and stall delay for HAWT[J]. Renewable energy, 2011, 36(1): 69-76.
[12] DU Z, SELIG M A.3-D stall-delay model for horizontal axis wind turbine performance predictions[R]. AIAA-98-0021. 1988.
[13] BRETON S P, COTON F N, MOE G.A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data[J]. Wind energy, 2008, 11(5): 459-482.
[14] SYED AHMED KABIR I F, NG E Y K. Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect[J]. Energy, 2017, 120: 518-536.
[15] HAND M M, SIMMS D A, FINGERSH L J, et al.Unsteady aerodynamics experiment phase vi: wind tunnel test configurations and available data campaigns[R]. NREL/TP-500-29955, 2001.
[16] SNEL H, SCHEPERS J G, MONTGOMERIE B.The MEXICO project(model experiments in controlled conditions): the database and first results of data processing and interpretation[J]. Journal of physics: conference series, 2007, 75: 012014.
[17] 吴友健, 杨艺. 不同湍流模型对风力机叶片翼型气动性能参数计算结果的影响研究[J]. 太阳能, 2020(8): 36-40.
WU Y J, YANG Y.Research on influence of different turbulence models on calculation results of aerodynamic performance parameters of wind turbine blade airfoil[J]. Solar energy, 2020(8): 36-40.
[18] 钟伟, 王同光. SST湍流模型参数校正对风力机CFD模拟的改进[J]. 太阳能学报, 2014, 35(9): 1743-1748.
ZHONG W, WANG T G.Improvement of CFD simulations for wind turbines by calibrating a closure constant of SST turbulence model[J]. Acta energiae solaris sinica, 2014, 35(9): 1743-1748.
[19] ZHANG J C, ZHAO X W.Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning[J]. Applied energy, 2021, 300: 117390.
[20] 段巍, 韩旭, 马良玉, 等. 基于Elman神经网络的风力机风轮子系统故障预警[J]. 太阳能学报, 2021, 42(12): 157-162.
DUAN W, HAN X, MA L Y, et al.Fault prediction of wind turbin wheel subsystem based on Elman neural network[J]. Acta energiae solaris sinica, 2021, 42(12): 157-162.
PDF(1529 KB)

Accesses

Citation

Detail

Sections
Recommended

/