POWER DEMAND RESPONSE STRATEGY CONSIDERING “ENERGY STORAGE OF HYDROGEN & ELECTRICITY”

Yuan Bo, Tian Guang, Liu Zhao, Ge Shaoyun, Wei Mengju, Liu Hong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 288-299.

PDF(1235 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1235 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 288-299. DOI: 10.19912/j.0254-0096.tynxb.2023-1522

POWER DEMAND RESPONSE STRATEGY CONSIDERING “ENERGY STORAGE OF HYDROGEN & ELECTRICITY”

  • Yuan Bo1,2, Tian Guang3, Liu Zhao1, Ge Shaoyun2, Wei Mengju1, Liu Hong2
Author information +
History +

Abstract

Firstly,based on the energy storage of hydrogen & electricity (ESHE) operating principle and demand response user classification,a dual-level framework of demand response is proposed including "optimal load" and "price incentive". Then,with the goal of optimizing the overall economic performance of the system,a load optimization model for first-level strategy is constructed,and a unconstrained algorithm is proposed for model solving. Finally,with the goal of optimizing user electricity bills,a price incentive model for secondary strategy is constructed to develop incentive electricity prices that can achieve optimal load. The case analysis shows that,the ESHE utilization efficiency is high and the overall revenue effect is good in proposed demand response strategy. Compared with demand response without considering ESHE,the demand response cost is reduced by 38.5% while the system operation revenue is increased by 2.19%,and the peak-valley difference rate and mean square error of load curve is reduced. At the same time,the proposed model solving algorithm can reduce operating cost and increase the revenue compared to traditional genetic algorithm.

Key words

demand response / dual-level framework / load optimization model / unconstrained solution / price incentive / energy storage of hydrogen & electricity

Cite this article

Download Citations
Yuan Bo, Tian Guang, Liu Zhao, Ge Shaoyun, Wei Mengju, Liu Hong. POWER DEMAND RESPONSE STRATEGY CONSIDERING “ENERGY STORAGE OF HYDROGEN & ELECTRICITY”[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 288-299 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1522

References

[1] GELLINGS C W.Then and now The perspective of the man who coined the term ‘DSM'[J]. Energy policy, 1996, 24(4): 285-288.
[2] SAELE H, GRANDE O S.Demand response from household customers: experiences from a pilot study in Norway[J]. IEEE transactions on smart grid, 2011, 2(1): 102-109.
[3] SIANO P.Demand response and smart grids: a survey[J]. Renewable and sustainable energy reviews, 2014, 30: 461-478.
[4] 王蓓蓓. 面向智能电网的用户需求响应特性和能力研究综述[J]. 中国电机工程学报, 2014, 34(22): 3654-3663.
WANG B B.Research on consumers'response characterics and ability under smart grid: a literatures survey[J]. Proceedings of the CSEE, 2014, 34(22): 3654-3663.
[5] KHODAEI A, SHAHIDEHPOUR M, BAHRAMIRAD S.SCUC with hourly demand response considering intertemporal load characteristics[J]. IEEE transactions on smart grid, 2011, 2(3): 564-571.
[6] YOUSEFI A, NGUYEN T T, ZAREIPOUR H, et al.Congestion management using demand response and FACTS devices[J]. International journal of electrical power & energy systems, 2012, 37(1): 78-85.
[7] 魏子强, 温鹏, 梁志, 等. 计及需求响应比例的园区综合能源系统低碳经济调度方法[J]. 太阳能学报, 2023, 44(10): 38-45.
WEI Z Q, WEN P, LIANG Z, et al.Low carbon economic dispatching method of park integrated energy system considering proportion of demand response[J]. Acta energiae solaris sinica, 2023, 44(10): 38-45.
[8] 徐筝, 孙宏斌, 郭庆来. 综合需求响应研究综述及展望[J]. 中国电机工程学报, 2018, 38(24): 7194-7205.
XU Z, SUN H B, GUO Q L.Review and prospect of integrated demand response[J]. Proceedings of the CSEE, 2018, 38(24): 7194-7205.
[9] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169.
XIE X R, MA N J, LIU W, et al.Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-169.
[10] 郝文斌, 曾鹏, 谢波, 等. 基于博弈论的含氢能配电网系统优化重构研究[J]. 太阳能学报, 2023, 44(8): 77-84.
HAO W B, ZENG P, XIE B, et al.Game theory-based optimal reconfiguration for distribution network system with hydrogen energy[J]. Acta energiae solaris sinica, 2023, 44(8): 77-84.
[11] ZHANG H C, LIN G X, CHEN J C.Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production[J]. International journal of hydrogen energy, 2010, 35(20): 10851-10858.
[12] 张哲原, 李凌, 丁苏阳, 等. 风电场柔性并网辅助系统及其优化模型[J]. 电网技术, 2019, 43(4): 1120-1127.
ZHANG Z Y, LI L, DING S Y, et al.Modeling and operation strategy research on flexible wind farm grid-connection auxiliary system[J]. Power system technology, 2019, 43(4): 1120-1127.
[13] 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42(17): 6155-6170.
GAO C W, WANG W, CHEN T.Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42(17): 6155-6170.
[14] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[15] 陈颖, 石永富, 钟鸿鸣, 等. 含高比例风光接入的输电网氢-电混合储能系统配置方法[J]. 电力建设, 2022, 43(11): 85-98.
CHEN Y, SHI Y F, ZHONG H M, et al.Configuration method for hydrogen-electricity hybrid energy storage system in transmission grid with high proportion of PV and wind power connection[J]. Electric power construction, 2022, 43(11): 85-98.
[16] 李梓丘, 乔颖, 鲁宗相. 海上风电-氢能系统运行模式分析及配置优化[J]. 电力系统自动化, 2022, 46(8): 104-112.
LI Z Q, QIAO Y, LU Z X.Operation mode analysis and configuration optimization of offshore wind-hydrogen system[J]. Automation of electric power systems, 2022, 46(8): 104-112.
[17] 江岳文, 杨国铭, 朱振山. 考虑交通流量捕获的风-氢-电耦合网络规划[J]. 电力系统自动化, 2021, 45(22): 19-28.
JIANG Y W, YANG G M, ZHU Z S.Wind-hydrogen-electricity coupled network planning considering traffic flow capture[J]. Automation of electric power systems, 2021, 45(22): 19-28.
[18] 孙子茹, 艾芊, 居来提·阿不力孜, 等. 考虑季节性氢储及期货式碳交易的综合能源系统年度规划研究[J]. 中国电力, 2022, 55(8): 2-13.
SUN Z R, AI Q, JULAITI A, et al.Annual planning study of integrated energy system considering seasonal hydrogen storage and futures carbon trading[J]. Electric power, 2022, 55(8): 2-13.
[19] 马丙泰, 刘海涛, 郝思鹏, 等. 基于价格需求响应的储能系统退化成本模型研究[J]. 太阳能学报, 2023, 44(10): 531-540.
MA B T, LIU H T, HAO S P, et al.Research on degradation cost model of energy storage system based on price demand response[J]. Acta energiae solaris sinica, 2023, 44(10): 531-540.
[20] ORTEGA Á, MILANO F.Generalized model of VSC-based energy storage systems for transient stability analysis[J]. IEEE transactions on power systems, 2016, 31(5): 3369-3380.
[21] PRASAD K, RANJAN R, SAHOO N C, et al.Optimal reconfiguration of radial distribution systems using a fuzzy mutated genetic algorithm[J]. IEEE transactions on power delivery, 2005, 20(2): 1211-1213.
[22] WANG J S, ZHANG F, LIU H N, et al.Interruptible load scheduling model based on an improved chicken swarm optimization algorithm[J]. CSEE journal of power and energy systems, 2021, 7(2): 232-240.
[23] HUANG D W, ZHOU D J, JIA X Y, et al.A mixed integer optimization method with double penalties for the complete consumption of renewable energy in distributed energy systems[J]. Sustainable energy technologies and assessments, 2022, 52: 102061.
[24] ZHANG M, KANG J X, TANG R X, et al.Sharing car park system for parking units of multiple EVs in a power market[J]. Energy, 2020, 212: 118489.
[25] XU F Y, ZHU W D, WANG Y F, et al.A new deregulated demand response scheme for load over-shifting city in regulated power market[J]. Applied energy, 2022, 311: 118337.
PDF(1235 KB)

Accesses

Citation

Detail

Sections
Recommended

/