TWO-STAGE SCHEDULING STRATEGY FOR HIGH-SPEED RAILWAY STATIONS INCORPORATING THERMOSTATICALLY CONTROLLED LOADS IN GREEN ENERGY TRADING SCENARIO

Chen Wenying, Liu Yang, Liu Weiliang, Zhang Xiaolei, Wang Xin, Kang Jiayao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 547-556.

PDF(3566 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3566 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 547-556. DOI: 10.19912/j.0254-0096.tynxb.2023-1529

TWO-STAGE SCHEDULING STRATEGY FOR HIGH-SPEED RAILWAY STATIONS INCORPORATING THERMOSTATICALLY CONTROLLED LOADS IN GREEN ENERGY TRADING SCENARIO

  • Chen Wenying1,2, Liu Yang1, Liu Weiliang1,2, Zhang Xiaolei1, Wang Xin3, Kang Jiayao3
Author information +
History +

Abstract

A two-stage energy optimization scheduling strategy is proposed for high-speed railway stations in the green electricity trading scenario, considering the uncertainty of clean energy output and the volatility of loads. The strategy incorporates thermostatically controlled loads. Firstly, a load model that captures the characteristics of high-speed railway stations is established based on the principle of thermal power balance and incorporates the thermostatically controlled system into the two-stage scheduling. Secondly, the probability correlation between random variable errors is described using a multivariate normal distribution. The Monte Carlo method and scenario reduction method based on probability distance are then used to generate typical scenarios for green electricity, photovoltaic power generation, and loads throughout the day at high-speed railway stations. Model predictive control is applied to achieve rolling optimization scheduling of the electricity system at high-speed railway stations using these typical scenarios. Finally, a case study is conducted at a specific high-speed railway station under typical seasonal conditions to analyze the scheduling results with the incorporation of the thermostatically controlled load model. This analysis aims to verify the advantages of the proposed model in improving the economic operation of high-speed railway stations, accommodating new energy sources, and assessing the robustness of the two-stage scheduling strategy.

Key words

clean energy / demand response / Monte Carlo methods / green power transaction / thermostatically controlled loads / stochastic model predictive control

Cite this article

Download Citations
Chen Wenying, Liu Yang, Liu Weiliang, Zhang Xiaolei, Wang Xin, Kang Jiayao. TWO-STAGE SCHEDULING STRATEGY FOR HIGH-SPEED RAILWAY STATIONS INCORPORATING THERMOSTATICALLY CONTROLLED LOADS IN GREEN ENERGY TRADING SCENARIO[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 547-556 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1529

References

[1] 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674.
XIAO Y P, WANG X F, WANG X L, et al.Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674.
[2] 袁桂丽, 刘培德, 贾新潮, 等.计及绿色电力证书制度的经济性优化调度[J]. 太阳能学报, 2021, 42(4): 139-146.
YUAN G L, LIU P D, JIA X C, et al.Economic optimal scheduling considering tradable green certificate system[J]. Acta energiae solaris sinica, 2021, 42(4): 139-146.
[3] 马卫武. 铁路客运站候车环境与能耗研究[D]. 长沙: 中南大学, 2009.
MA W W.Research on waiting environment and energy consumption at the passenger railway station[D]. Changsha: Central South University, 2009.
[4] YANG L, GUO H, HUANG K.Optimal dispatch for a combined cooling, heating and power microgrid considering building virtual energy storage[J]. Journal of electrical engineering & technology, 2019, 14(2): 581-594.
[5] 王丹, 兰宇, 贾宏杰, 等. 基于弹性温度可调裕度的中央空调集群需求响应双层优化[J]. 电力系统自动化, 2018, 42(22): 118-126, 134.
WANG D, LAN Y, JIA H J, et al.Double-layer optimization strategy of cluster central air-conditioner demand response based on elastic temperature adjustable margin[J]. Automation of electric power systems, 2018, 42(22): 118-126, 134.
[6] 范德金, 张姝, 王杨, 等.考虑用户调节行为多样性的空调负荷聚合商日前调度策略[J].电力系统保护与控制, 2022, 50(17) : 133-142.
FAN D J, ZHANG S, WANG Y, et al.Day ahead scheduling strategy for air conditioning load aggregators considering user regulation behavior diversity[J]. Power system protection and control, 2022, 50(17) : 133-142.
[7] 王永权, 张沛超, 姚垚. 聚合大规模空调负荷的信息物理建模与控制方法[J]. 中国电机工程学报, 2019, 39(22): 6509-6521.
WANG Y Q, ZHANG P C, YAO Y.Cyber-physical modeling and control method for aggregating large-scale ACLs[J]. Proceedings of the CSEE, 2019, 39(22): 6509-6521.
[8] 杨辰星. 公共楼宇空调负荷参与电网调峰关键技术研究[D]. 南京: 东南大学, 2017.
YANG C X.Research on key technologies for peak load shaving by public building's air conditioning loads[D]. Nangjing: Southeast University, 2017.
[9] 赵波, 薛美东, 陈荣柱, 等. 高可再生能源渗透率下考虑预测误差的微电网经济调度模型[J]. 电力系统自动化, 2014, 38(7): 1-8.
ZHAO B, XUE M D, CHEN R Z, et al.An economic dispatch model for microgrid with high renewable energy resource penetration considering forecast errors[J]. Automation of electric power systems, 2014, 38(7): 1-8.
[10] 徐立中, 易永辉, 朱承治, 等. 考虑风电随机性的微网多时间尺度能量优化调度[J]. 电力系统保护与控制, 2014, 42(23): 1-8.
XU L Z, YI Y H, ZHU C Z, et al.Multi-time scale optimal energy dispatch of microgrid considering stochastic wind power[J]. Power system protection and control, 2014, 42(23): 1-8.
[11] WANG C, JIAO B, GUO L, et al.Robust scheduling of building energy system under uncertainty[J]. Applied energy, 2016, 167: 366-376.
[12] 刘一欣, 郭力, 王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报, 2018, 38(14): 4013-4022.
LIU Y X, GUO L, WANG C S.Economic dispatch of microgrid based on two stage robust optimization[J]. Proceedings of the CSEE, 2018, 38(14): 4013-4022.
[13] 张彦, 张涛, 刘亚杰, 等. 基于模型预测控制的家庭能源局域网最优能量管理研究[J]. 中国电机工程学报, 2015, 35(14): 3656-3666.
ZHANG Y, ZHANG T, LIU Y J, et al.Optimal energy management of a residential local energy network based on model predictive control[J]. Proceedings of the CSEE, 2015, 35(14): 3656-3666.
[14] HE Y, LI Z, ZHANG J, et al.Day-ahead and intraday multi-time scale microgrid scheduling based on light robustness and MPC[J]. International journal of electrical power & energy systems, 2023, 144: 108546.
[15] 袁桂丽, 刘培德, 唐福斌, 等. 计及绿色电力证书与碳交易制度的“源-荷”协调优化调度[J]. 太阳能学报, 2022, 43(6): 190-195.
YUAN G L, LIU P D, TANG F B, et al.Source-load coordination optimal scheduling considering green power certificate and carbon trading mechanisms[J]. Acta energiae solaris sinica, 2022, 43(6): 190-195.
[16] 张东月, 张照彦, 王培光, 等. 基于预测偏差惩罚和绿色证书交易的商服中心综合能源系统日前调度优化[J]. 中国测试, 2022, 48(10): 100-108.
ZHANG D Y, ZHANG Z Y, WANG P G, et al.Day-ahead scheduling optimization of integrated energy system of commercial service center based on prediction deviation penalty and green certificate trading[J]. China measurement & test, 2022, 48(10): 100-108.
[17] 莫若慧, 余加喜, 贾浩, 等. 面向光伏消纳的“大机小网”系统两阶段优化调度[J]. 可再生能源, 2021, 39(3): 365-371.
MO R H, YU J X, JIA H, et al.Two-stage optimal dispatch of “large machine and small network” system for photovoltaic accommodation[J]. Renewable energy resources, 2021, 39(3): 365-371.
[18] 谭颖, 吕智林, 李捷. 基于改进ELM的风/光/柴/储独立微网分布式电源多目标容量优化配置[J]. 电力系统保护与控制, 2016, 44(8): 63-70.
TAN Y, LYU Z L, LI J.Multi-objective optimal sizing method for distributed power of wind-solar-diesel-battery independent microgrid based on improved electromagnetism-like mechanism[J]. Power system protection and control, 2016, 44(8): 63-70.
[19] 郭海军. 计及建筑虚拟储能的冷热电联供微网优化调度[D]. 秦皇岛: 燕山大学, 2019.
GUO H J.Optimal scheduling of CCHP microgrid considering virtual energy storage of buildings[D]. Qinhuangdao: Yanshan University, 2019.
[20] 中国电子工程设计院. 空气调节设计手册[M]. 3版. 北京: 中国建筑工业出版社, 2017: 129-186.
China Electronic Engineering Design Institute. Air conditioning design manual [M]. Third edition. Beijing: China Construction Industry Publishing House, 2017: 129-186.
[21] 杨锡运, 张璜, 修晓青, 等. 基于商业园区源/储/荷协同运行的储能系统多目标优化配置[J]. 电网技术, 2017, 41(12): 3996-4003.
YANG X Y, ZHANG H, XIU X Q, et al.Multi-objective optimal configuration of energy storage systems based on coordinated operation of source/storage/load in commercial park[J]. Power system technology, 2017, 41(12): 3996-4003.
[22] 韩旭, 周峻毅, 林俊军, 等.计及弃电转热的IES系统设计及运行特性研究[J].太阳能学报, 2023, 44(10): 514-522.
HAN X, ZHOU J Y, LIN J J, et al.Design and operation characteristics of IES system considering power to heat[J]. Acta energiae solaris sinica, 2023, 44(10): 514-522.
[23] 黄立滨, 蔡海青, 顾浩瀚, 等. 计及分布式光伏和储能主动支撑的配电网日前日内协调优化运行策略[J]. 南方电网技术, 2024, 18(8): 51-60.
HUANG L B, CAI H Q, GU H H, et al.Coordinated optimal strategy of day-ahead and intra-day operation of pistribution network considering the active support of distributed photovoltaic and energy storage system[J]. Southern power system technology, 2024, 18(8): 51-60.
[24] 金天然. 考虑风光时空相关性的场景生成与缩减方法研究[D]. 保定: 华北电力大学, 2020.
JIN T R.Research on scenario generation and reduction method considering the temporal and spatial correlation of wind and solar energy[D]. Baoding: North China Electric Power University, 2020.
[25] 董文略, 王群, 杨莉. 含风光水的虚拟电厂与配电公司协调调度模型[J]. 电力系统自动化, 2015, 39(9): 75-81, 207.
DONG W L, WANG Q, YANG L.A coordinated dispatching model for a distribution utility and virtual power plants with wind/photovoltaic/hydro generators[J]. Automation of electric power systems, 2015, 39(9): 75-81, 207.
[26] 李清涛, 卢钺, 刘洋, 等. 计及电动汽车的有源配电网新能源消纳两阶段调度策略[J]. 热力发电, 2022, 51(9): 54-62.
LI Q T, LU Y, LIU Y, et al.Two-stage dispatch strategy for new energy consumption in active distribution network considering electric vehicles[J]. Thermal power generation, 2022, 51(9): 54-62.
PDF(3566 KB)

Accesses

Citation

Detail

Sections
Recommended

/