SHORT-TERM PHOTOVOLTAIC POWER INTERVAL PREDICTION MODEL BASED ON MODWT-CEEMDAN-LSTM

Chen Chuanyu, Xiong Guojiang, Fang Houkang, Luo Yingxun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 416-424.

PDF(2510 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2510 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 416-424. DOI: 10.19912/j.0254-0096.tynxb.2023-1578

SHORT-TERM PHOTOVOLTAIC POWER INTERVAL PREDICTION MODEL BASED ON MODWT-CEEMDAN-LSTM

  • Chen Chuanyu1, Xiong Guojiang1,2, Fang Houkang1, Luo Yingxun1
Author information +
History +

Abstract

In response to the volatility, randomness, and intermittency of photovoltaic power, this study proposes a short-term interval prediction model based on the maximum overlapping discrete wavelet transform(MODWT), complementary empirical mode decomposition with adaptive noise(CEEMDAN), and long short-term memory network(LSTM). Firstly, MODWT and CEEMDAN are used to decompose the PV power time series quadratically to obtain the intrinsic mode functions (IMF) components, Then,these IMF components are inputted into the LSTM for component prediction and the component prediction results are reconstructed to obtain the point prediction result; Finally, quantile regression is used to model the point prediction results and the interval prediction results are obtained. Finally, the interval prediction results are obtained by modeling the point prediction results with quantile regression. Practical examples show that the combination of the time-frequency domain decomposition method and the frequency domain decomposition method makes the model show excellent robustness and accuracy in the point prediction and interval prediction of PV power under the three weather conditions.

Key words

PV power / prediction / deep learning / long short-term memory / maximal overlap discrete wavelet transform / complete ensemble empirical mode decomposition with adaptive noise

Cite this article

Download Citations
Chen Chuanyu, Xiong Guojiang, Fang Houkang, Luo Yingxun. SHORT-TERM PHOTOVOLTAIC POWER INTERVAL PREDICTION MODEL BASED ON MODWT-CEEMDAN-LSTM[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 416-424 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1578

References

[1] 魏骜, 茅大钧, 韩万里, 等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程, 2020, 35(4): 203-209.
WEI A, MAO D J, HAN W L, et al.Short-term load forecasting based on EMD and long short-term memory neural networks[J]. Journal of engineering for thermal energy and power, 2020, 35(4): 203-209.
[2] 国家能源局. 我国风电光伏发电总装机突破8亿千瓦[EB/OL]. (2023-05-25) [2023-09-12]. http://www.nea.gov.cn/2023-05/25/c_1310721539.htm.
National Energy Administration. China’s wind and solar power generation capacity exceeds 800 million kilowatts. [EB/OL]. (2023-05-25) [2023-09-12]. http://www.nea.gov.cn/2023-05/25/c_1310721539.htm.
[3] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[4] 李安寿, 陈琦, 王子才, 等. 光伏发电系统功率预测方法综述[J]. 电气传动, 2016, 46(6): 93-96.
LI A S, CHEN Q, WANG Z C, et al.Review of power forecast methods for photovoltaic generating system[J]. Electric drive, 2016, 46(6): 93-96.
[5] CATALÃO J P S, POUSINHO H M I, MENDES V M F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J]. Renewable energy, 2011, 36(4): 1245-1251.
[6] 丁明, 王磊, 毕锐. 基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J]. 电力系统保护与控制, 2012, 40(11): 93-99, 148.
DING M, WANG L, BI R.A short-term prediction model to forecast output power of photovoltaic system based on improved BP neural network[J]. Power system protection and control, 2012, 40(11): 93-99, 148.
[7] 孙辉, 冷建伟. 基于结合混沌纵横交叉的PSO-DBN的短期光伏功率预测[J]. 电测与仪表, 2020, 57(6): 67-72.
SUN H, LENG J W.Short-term PV power prediction based on particle swarm optimization combined with chaos crossover for deep belief networks[J]. Electrical measurement & instrumentation, 2020, 57(6): 67-72.
[8] 易海燕. 基于小波分解和卷积神经网络的光伏发电功率预测方法[D]. 深圳: 深圳大学, 2018.
YI H Y.Photovoltaic power prediction method based on wavelet decomposition and convolutional neural network[D]. Shenzhen: Shenzhen University, 2018.
[9] 黄亚峰, 何威, 吴光琴, 等. 基于K-means++和LSTM网络的光伏功率预测研究[J]. 电气自动化, 2020, 42(5): 25-27, 34.
HUANG Y F, HE W, WU G Q, et al.Research on photovoltaic power prediction based on K-means++ and LSTM network[J]. Electrical automation, 2020, 42(5): 25-27, 34.
[10] 田剑刚, 张沛, 彭春华, 等. 基于分时长短期记忆神经网络的光伏发电超短期功率预测[J]. 现代电力, 2020, 37(6): 629-638.
TIAN J G, ZHANG P, PENG C H, et al.Ultra short-term forecast of photovoltaic generation based on time-division long short-term memory neural networks[J]. Modern electric power, 2020, 37(6): 629-638.
[11] GAO M M, LI J J, HONG F, et al.Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J]. Energy, 2019, 187: 115838.
[12] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[13] 阳霜, 罗滇生, 何洪英, 等. 基于EMD-LSSVM的光伏发电系统功率预测方法研究[J]. 太阳能学报, 2016, 37(6): 1387-1395.
YANG S, LUO D S, HE H Y, et al.Output power forecast of PV power system based on EMD-LSSVM model[J]. Acta energiae solaris sinica, 2016, 37(6): 1387-1395.
[14] 岳有军, 刘英翰, 赵辉, 等. 基于CEEMDAN-SE和DBN的短期电力负荷预测[J]. 电测与仪表, 2020, 57(17): 59-65.
YUE Y J, LIU Y H, ZHAO H, et al.Short-term load forecasting based on CEEMDAN-SE and DBN[J]. Electrical measurement & instrumentation, 2020, 57(17): 59-65.
[15] 刘凡, 李捍东, 覃涛. 基于CEEMDAN-AsyHyper Band-MultiTCN的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 151-158.
LIU F, LI H D, Qin T.Short-term wind power prediction based on CEEMDAN-AsyHyperBand-MultiTCN[J]. Acta energiae solaris sinica, 2024, 45(1): 151-158.
[16] 崔新苗, 孙渊. 基于CEEMDAN-ISSA-BPNN组合模型的风机功率短期预测[J]. 上海电机学院学报, 2023, 26(3): 141-146.
CUI X M, SUN Y.Short-term wind power prediction based on a CEEMDAN-ISSA-BPNN combined model[J]. Journal of Shanghai Dianji University, 2023, 26(3): 141-146.
[17] 杨茂, 王凯旋. 基于CEEMD-DBN模型的光伏出力日前区间预测[J]. 高电压技术, 2021, 47(4): 1156-1164.
YANG M, WANG K X.Day-ahead interval forecasting of PV power based on CEEMD-DBN model[J]. High voltage engineering, 2021, 47(4): 1156-1164.
[18] 肖白, 张博, 王辛玮, 等. 基于组合模态分解和深度学习的短期风电功率区间预测[J]. 电力系统自动化, 2023, 47(17): 110-117.
XIAO B, ZHANG B, WANG X W, et al.Short-term wind power interval prediction based on combined mode decomposition and deep learning[J]. Automation of electric power systems, 2023, 47(17): 110-117.
[19] 于涛, 杨涛. 基于混沌理论和小波变换的电力系统短期负荷预测方法[J]. 内蒙古科技与经济, 2007(22): 95-97.
YU T, YANG T.Short-term load forecasting method for power system based on chaos theory and wavelet transform[J]. Inner Mongolia science technology & economy, 2007(22): 95-97.
[20] 李芬, 孙凌, 王亚维, 等. 基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测[J]. 上海交通大学学报, 2024, 58(6): 806-818.
LI F, SUN L, WANG Y W, et al.Short-term interval forecasting of photovoltaic power based on CEEMDAN-GSA-LSTM and SVR[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 806-818.
[21] 陈佳慧, 高彦杰, 靳一玮. 基于MODWT和BP神经网络的微电网故障诊断方法[J]. 上海电力大学学报, 2021, 37(1): 57-60, 77.
CHEN J H, GAO Y J, JIN Y W.A new microgrid fault diagnosis method based on MODWT and BP neural network[J]. Journal of Shanghai University of Electric Power, 2021, 37(1): 57-60, 77.
[22] ZHANG C, HUA L, JI C L, et al.An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine[J]. Applied energy, 2022, 322: 119518.
[23] 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182.
YANG J X, ZHANG S, LIU J C, et al.Short-term photovoltaic power prediction based on variational mode decomposition and long shortterm memory with dual-stage attention mechanism[J]. Automation of electric power systems, 2021, 45(3): 174-182.
[24] 苏向敬, 周汶鑫, 李超杰, 等. 基于双重注意力LSTM神经网络的可解释海上风电出力预测[J]. 电力系统自动化, 2022, 46(7): 141-151.
SU X J, ZHOU W X, LI C J, et al.Interpretable offshore wind power output forecasting based on long short-term memory neural network with dual-stage attention[J]. Automation of electric power systems, 2022, 46(7): 141-151.
[25] LIU R H, WEI J C, SUN G P, et al.A short-term probabilistic photovoltaic power prediction method based on feature selection and improved LSTM neural network[J]. Electric power systems research, 2022, 210: 108069.
[26] 杨锡运, 邢国通, 马雪, 等. 一种核极限学习机分位数回归模型及风电功率区间预测[J]. 太阳能学报, 2020, 41(11): 300-306.
YANG X Y, XING G T, MA X, et al.A model of quantile regression with kernel extreme learning machine and wind power interval prediction[J]. Acta energiae solaris sinica, 2020, 41(11): 300-306.
[27] PAN C, TAN J, FENG D D.Prediction intervals estimation of solar generation based on gated recurrent unit and kernel density estimation[J]. Neurocomputing, 2021, 453: 552-562.
PDF(2510 KB)

Accesses

Citation

Detail

Sections
Recommended

/