REVIEW ON ULTRATHIN WAFER SLICING OF PHOTOVOLTAIC MONOCRYSTALLINE SILICON WITH THINNER DIAMOND WIRE SAW

Ge Mengran, Zhao Guili, Zheng Jintao, Zhao Yukang, Xing Xu, Ge Peiqi

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 183-193.

PDF(3758 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3758 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 183-193. DOI: 10.19912/j.0254-0096.tynxb.2023-1581

REVIEW ON ULTRATHIN WAFER SLICING OF PHOTOVOLTAIC MONOCRYSTALLINE SILICON WITH THINNER DIAMOND WIRE SAW

  • Ge Mengran1, Zhao Guili1, Zheng Jintao2, Zhao Yukang2, Xing Xu3, Ge Peiqi2
Author information +
History +

Abstract

The principle and state-of-art of PV monocrystalline silicon slicing processing are reviewed herein. The core wire diameter of the diamond wire saw has been reduced to 37 μm. The as-cut half G12 wafer thickness of PV monocrystalline silicon has been reduced to 110 μm. It is elaborated that the main technical approaches for high wafer yield slicing are to reduce the as-cut wafer thickness and the diameter of diamond wire saw. The effects of surface crack damage and fracture strength of sliced silicon wafer, liquid bridge interaction at diamond wire saws and as-cut silicon wafers, and machine vision detection on the high wafer yield slicing processing of PV monocrystalline silicon are discussed. The key technologies faced in the high wafer yield slicing processing of PV monocrystalline silicon are proposed: 1) to develop low-cost tungsten core wire diamond wire saw; 2) to develop new coolants and lubricating technologies; 3) to develop new slicing processing technology; 4) to establish a quantitative relationship between the distribution of abrasives and the machining performance of electroplated diamond wire saw.

Key words

photovoltaics / sawing / monocrystalline silicon / diamond wire saw / as-cut wafer thickness / kerf loss

Cite this article

Download Citations
Ge Mengran, Zhao Guili, Zheng Jintao, Zhao Yukang, Xing Xu, Ge Peiqi. REVIEW ON ULTRATHIN WAFER SLICING OF PHOTOVOLTAIC MONOCRYSTALLINE SILICON WITH THINNER DIAMOND WIRE SAW[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 183-193 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1581

References

[1] LIU Z, SOFIA S E, LAINE H S, et al.Revisiting thin silicon for photovoltaics: a technoeconomic perspective[J]. Energy & environmental science, 2020, 13(1): 12-23.
[2] 任涛, 韩一峰, 韩硕, 等. n型高效光伏组件发电性能研究[J]. 太阳能学报, 2022, 43(12): 13-18.
REN T, HAN Y F, HAN S, et al.Power generation performance study of high-efficiency n-type PV module[J]. Acta energiae solaris sinica, 2022, 43(12): 13-18.
[3] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[4] 杨煜豪, 刘文柱, 张丽平, 等. 晶硅异质结太阳电池nc-Si∶H/nc-SiOx∶H叠层窗口层研究[J]. 太阳能学报, 2023, 44(8): 203-207.
YANG Y H, LIU W Z, ZHANG L P, et al.Research on nc-Si: H/nc-SiOx: H stacked thin films as silicon heterojunction solar cell window layer[J]. Acta energiae solaris sinica, 2023, 44(8): 203-207.
[5] International technology roadmap for photovoltaic (ITRPV)[R]. Fourteenth Edition, April2023. https://www.vdma.org/international-technology-roadmap-photovoltaic.
[6] YANG H L, LIU I T, LIU C E, et al.Recycling and reuse of kerf-loss silicon from diamond wire sawing for photovoltaic industry[J]. Waste management, 2019, 84: 204-210.
[7] RYNINGEN B, TETLIE P, JOHNSEN S G, et al.Capillary forces as a limiting factor for sawing of ultrathin silicon wafers by diamond multi-wire saw[J]. Engineering science and technology, an international journal, 2020, 23(5): 1100-1108.
[8] WALTERS J, SUNDER K, ANSPACH O, et al.Challenges associated with diamond wire sawing when generating reduced thickness mono-crystalline silicon wafers[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) . Portland, OR, USA. 2016: 0724-0728.
[9] SEKHAR H, FUKUDA T, TANAHASHI K, et al.Mechanical strength problem of thin silicon wafers (120 and 140 μm) cut with thinner diamond wires (Si kerf 120 → 100 μm) for photovoltaic use[J]. Materials science in semiconductor processing, 2020, 119: 105209.
[10] HUANG H, LI X L, MU D K, et al.Science and art of ductile grinding of brittle solids[J]. International journal of machine tools and manufacture, 2021, 161: 103675.
[11] HUANG H, LAWN B R, COOK R F, et al.Critique of materials-based models of ductile machining in brittle solids[J]. Journal of the American Ceramic Society, 2020, 103(11): 6096-6100.
[12] GE M R, CHEN Z B, WANG P Z, et al.Crack damage control for diamond wire sawing of silicon: the selection of processing parameters[J]. Materials science in semiconductor processing, 2022, 148: 106838.
[13] HU J Z, MERKLE L D, MENONI C S, et al.Crystal data for high-pressure phases of silicon[J]. Physical review B, 1986, 34(7): 4679-4684.
[14] YAN J, TAKAHASHI H, GAI X, et al.Load effects on the phase transformation of single-crystal silicon during nanoindentation tests[J]. Materials science and engineering A, 2006, 423: 19-23.
[15] GE M R, ZHU H T, HUANG C Z, et al.Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments[J]. Materials science in semiconductor processing, 2018, 74: 261-266.
[16] LI C, ZHANG F H, MENG B B, et al.Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics[J]. Ceramics international, 2017, 43(3): 2981-2993.
[17] MENG B B, ZHANG Y, ZHANG F H.Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter[J]. Applied physics A, 2016, 122(3): 247.
[18] FENG J Y, WAN Z P, WANG W, et al.Unique crack behaviors of glass BK7 occurred in successive double scratch under critical load of Median crack initiation[J]. Journal of the European Ceramic Society, 2020, 40(8): 3279-3290.
[19] GE M R, ZHU H T, GE P Q, et al.Investigation on residual scratch depth and material removal rate of scratching machining single crystal silicon with Berkovich indenter[J]. Materials science in semiconductor processing, 2019, 100: 98-105.
[20] KOVALCHENKO A M, GOEL S, ZAKIEV I M, et al.Suppressing scratch-induced brittle fracture in silicon by geometric design modification of the abrasive grits[J]. Journal of materials research and technology, 2019, 8(1): 703-712.
[21] KUMAR A, KOVALCHENKO A, POGUE V, et al.Ductile mode behavior of silicon during scribing by spherical abrasive particles[J]. Procedia CIRP, 2016, 45: 147-150.
[22] KUMAR A, KAMINSKI S, MELKOTE S N, et al. Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers[J]. Wear, 2016, 364/365: 163-168.
[23] PALA U, KUSTER F, WEGENER K.Characterization of electroplated diamond wires and the resulting workpiece quality in silicon sawing[J]. Journal of materials processing technology, 2020, 276: 116390.
[24] WANG B, MELKOTE S N, SARAOGI S, et al.Effect of scratching speed on phase transformations in high-speed scratching of monocrystalline silicon[J]. Materials science and engineering A, 2020, 772: 138836.
[25] ZHANG Z Y, MENG F N, CUI J F, et al.Deformation induced complete amorphization at nanoscale in a bulk silicon[J]. AIP advances, 2019, 9(2): 025101.
[26] LAWN B R, EVANS A G, MARSHALL D B.Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9/10): 574-581.
[27] WANG P Z, GE P Q, GE M R, et al.Material removal mechanism and crack propagation in single scratch and double scratch tests of single-crystal silicon carbide by abrasives on wire saw[J]. Ceramics international, 2019, 45(1): 384-393.
[28] 葛培琪, 陈自彬, 王沛志. 单晶硅切片加工技术研究进展[J]. 金刚石与磨料磨具工程, 2020, 40(4): 12-18.
GE P Q, CHEN Z B, WANG P Z.Review of monocrystalline silicon slicing technology[J]. Diamond & abrasives engineering, 2020, 40(4): 12-18.
[29] SUZUKI T, NISHINO Y, YAN J W.Mechanisms of material removal and subsurface damage in fixed-abrasive diamond wire slicing of single-crystalline silicon[J]. Precision engineering, 2017, 50: 32-43.
[30] LIU T Y, GE P Q, BI W B, et al.Fracture strength of silicon wafers sawn by fixed diamond wire saw[J]. Solar energy, 2017, 157: 427-433.
[31] XIAO H P, WANG H R, YU N, et al.Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers[J]. Journal of materials processing technology, 2019, 273: 116267.
[32] AHN Y, FARRIS T N, CHANDRASEKAR S.Sliding microindentation fracture of brittle materials: role of elastic stress fields[J]. Mechanics of materials, 1998, 29(3/4): 143-152.
[33] WANG P Z, GE P Q, BI W B, et al.Interaction of lateral cracks in double scratching of single-crystal silicon carbide[J]. Theoretical and applied fracture mechanics, 2019, 104: 102378.
[34] BUDNITZKI M, KUNA M.Scratching of silicon surfaces[J]. International journal of solids and structures, 2019, 162: 211-216.
[35] LI Z Q, GE P Q, BI W B, et al.Coupling stress caused by thermal and slicing force in KDP crystal slicing with fixed abrasive wire saw[J]. The international journal of advanced manufacturing technology, 2018, 96(9): 4333-4343.
[36] LIU T Y, SU Y C, GE P Q.Breakage ratio of silicon wafer during fixed diamond wire sawing[J]. Micromachines, 2022, 13(11): 1895.
[37] KLUTE C, KAULE F, SCHOENFELDER S.Breakage root cause analysis in as-cut monocrystalline silicon wafers[C]// European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam, Netherlands, 2014: 753-756.
[38] SEKHAR H, FUKUDA T, TANAHASHI K, et al.The impact of saw mark direction on the fracture strength of thin (120 µm) monocrystalline silicon wafers for photovoltaic cells[J]. Japanese journal of applied physics, 2018, 57(9): 095501.
[39] SEKHAR H, FUKUDA T, TANAHASHI K, et al.The impact of silicon brick polishing on thin (120 μm) silicon wafer sawing yields and fracture strengths in diamond-wire sawing[J]. Materials science in semiconductor processing, 2020, 105: 104751.
[40] 朱朝飞, 贾建援, 付红志, 等. 狭长平行板间液桥形态及受力研究[J]. 工程力学, 2016, 33(6): 222-229.
ZHU Z F, JIA J Y, FU H Z, et al.A study of shape and forces of liquid bridge between two slender parallel flat plates[J]. Engineering mechanics, 2016, 33(6): 222-229.
[41] NGUYEN H N G, ZHAO C F, MILLET O, et al. An original method for measuring liquid surface tension from capillary bridges between two equal-sized spherical particles[J]. Powder technology, 2020, 363: 349-359.
[42] DUPRAT C, PROTIERE S.Capillary stretching of fibers[J]. EPL (europhysics letters), 2015, 111(5): 56006.
[43] LI Z Q, GE P Q, BI W B, et al.Influence of anisotropy of KDP crystal on the surface shape deviation of slice by diamond wire saw[J]. The international journal of advanced manufacturing technology, 2021, 113(5): 1771-1785.
[44] VAN ZWOL P J, PALASANTZAS G, DE HOSSON J T M. Influence of roughness on capillary forces between hydrophilic surfaces[J]. Physical review E, statistical, nonlinear, and soft matter physics, 2008, 78(3 Pt. 1): 031606.
[45] ZHU L Q, KAO I.Galerkin-based modal analysis on the vibration of wire-slurry system in wafer slicing using a wiresaw[J]. Journal of sound and vibration, 2005, 283(3/4/5): 589-620.
[46] ZHANG Y.Static and dynamic behaviour of inter-granular liquid bridges: hysteresis of contact angle and capillary forces[D]. Sydney: University of Sydney, 2016.
[47] BICO J, REYSSAT É, ROMAN B.Elastocapillarity: when surface tension deforms elastic solids[J]. Annual review of fluid mechanics, 2018, 50: 629-659.
[48] DUPRAT C, PROTIÈRE S, BEEBE A Y, et al. Wetting of flexible fibre arrays[J]. Nature, 2012, 482: 510-513.
[49] ZHENG J T, GE P Q, BI W B, et al.Action mechanism of liquid bridge between electroplated diamond wires for ultrathin wafer slicing[J]. Solar energy, 2022, 231: 343-354.
[50] ZHENG J T, GE P Q, BI W B, et al.Transverse forced vibration of a diamond wire under support excitations[J]. International journal of mechanical sciences, 2023, 237: 107786.
[51] ZHENG J T, GE M R, GE P Q, et al.Effect of a liquid bridge on the dynamic behavior of diamond wires during slicing[J]. Journal of manufacturing processes, 2023, 94: 578-591.
[52] LIU T Y, GE P Q, BI W B, et al.Prediction of the thickness for silicon wafers sawn by diamond wire saw[J]. Materials Science in semiconductor processing, 2017, 71: 133-138.
[53] BICO J, ROMAN B, MOULIN L, et al.Elastocapillary coalescence in wet hair[J]. Nature, 2004, 432: 690.
[54] ZHENG J T, GE P Q, BI W B, et al.Effect of capillary adhesion on fracture of photovoltaic silicon wafers during diamond wire slicing[J]. Solar energy, 2022, 238: 105-113.
[55] PALA U, WEGENER K.A novel method for the characterization of diamond wire topography and abrasive grain geometries[J]. MM science journal, 2020, 2019(4): 3236-3242.
[56] NIE L, LIN C Y, LIAO K, et al.Unsupervised deep image stitching: reconstructing stitched features to images[J]. IEEE transactions on image processing, 2021, 30: 6184-6197.
[57] ZHAO Y K, GE P Q, BI W B, et al.MRF based image stitching of electroplated diamond wire saw: for improving visual inspection accuracy of manufacturing quality[J]. Measurement, 2023, 208: 112486.
[58] HE L, REN X, GAO Q, et al.The connected-component labeling problem: a review of state-of-the-art algorithms[J]. Pattern recognition, 2017, 70: 25-43.
[59] YANG R Y, ZOU R P, YU A B.Voronoi tessellation of the packing of fine uniform spheres[J]. Physical review E, statistical, nonlinear, and soft matter physics, 2002, 65(4 Pt. 1): 041302.
[60] ZHAO Y K, BI W B, GE P Q.An on-line inspection method for abrasive distribution uniformity of electroplated diamond wire saw[J]. Journal of manufacturing processes, 2021, 71: 290-297.
[61] ZHAO Y K, GE P Q, BI W B, et al.Machine vision online detection for abrasive protrusion height on the surface of electroplated diamond wire saw[J]. The international journal of advanced manufacturing technology, 2022, 121(11): 7923-7932.
PDF(3758 KB)

Accesses

Citation

Detail

Sections
Recommended

/