ECONOMIC AND ENVIRONMENTAL ANALYSIS OF SCO2 POWER SYSTEM UNDER DIFFERENT SOLAR CONCENTRATING METHODS

Zhang Yicen, Fan Gang, Bi Jingfang, Wang Yuxing, Dai Yiping

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 479-487.

PDF(2381 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2381 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 479-487. DOI: 10.19912/j.0254-0096.tynxb.2023-1588

ECONOMIC AND ENVIRONMENTAL ANALYSIS OF SCO2 POWER SYSTEM UNDER DIFFERENT SOLAR CONCENTRATING METHODS

  • Zhang Yicen, Fan Gang, Bi Jingfang, Wang Yuxing, Dai Yiping
Author information +
History +

Abstract

In this paper, the economic and environmental performance of SCO2 power systems under linear Fresnel, trough parabolic and tower concentrating methods are analyzed respectively, and the effects of different thermal energy storage working fluids and SCO2 cycles on system performance are compared. Finally, the multi-objective optimization is conducted for the proposed systems. The results show that increasing the hot tank temperature or decreasing the cold tank temperature contribute to lower investment cost. The SPT plant integrated with recompression SCO2 cycle and NaCl-KCl-MgCl2 molten salt as the thermal storage medium provides the best thermo-economic and environmental performance. In Delingha, the system cost is 0.131 $/kWh over the life sycle and produces 24.3 g/kWh of CO2-equivalent emissions per kWh of output.

Key words

concentrated solar power / economic analysis / environmental impact / supercritical CO2 cycle

Cite this article

Download Citations
Zhang Yicen, Fan Gang, Bi Jingfang, Wang Yuxing, Dai Yiping. ECONOMIC AND ENVIRONMENTAL ANALYSIS OF SCO2 POWER SYSTEM UNDER DIFFERENT SOLAR CONCENTRATING METHODS[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 479-487 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1588

References

[1] 王志峰, 陈晨, 杜风丽, 等. 中国太阳能热发电行业蓝皮书2024[R]. 北京: 国家太阳能光热产业技术创新战略联盟, 2025.
WANG Z F, CHEN C, DU F L, et al.China Solar thermal power generation industry blue book 2024[R]. Beijing: National Solar Thermal Industry Technology Innovation Strategic Alliance, 2025.
[2] KINCAID N, MUNGAS G, KRAMER N, et al.An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver[J]. Applied energy, 2018, 231: 1109-1121.
[3] 颜建国, 朱凤岭, 郭鹏程, 等. 超临界CO2在内凸管内对流传热强化试验研究[J]. 太阳能学报, 2020, 41(7): 244-250.
YAN J G, ZHU F L, GUO P C, et al.Experimental study on heat transfer enhancement of supercritical CO2 flowing in an inner convex tube[J]. Acta energiae solaris sinica, 2020, 41(7): 244-250.
[4] 何吉祥, 朱兵国, 彭斌, 等. 太阳能热发电中超临界压力CO2在渐扩变截面圆管内冷却传热强化机理[J]. 太阳能学报, 2023, 44(9): 249-256.
HE J X, ZHU B G, PENG B, et al.Cooling heat transfer enhancement mechanism of supercritical pressure CO2 in diverging variable cross-section circular tube in solar thermal power generation[J]. Acta energiae solaris sinica, 2023, 44(9): 249-256.
[5] SONG J, WANG Y X, WANG K, et al.Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: thermoeconomic assessment of various configurations[J]. Renewable energy, 2021, 174: 1020-1035.
[6] WANG K, LI M J, GUO J Q, et al.A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants[J]. Applied energy, 2018, 212: 109-121.
[7] 吴毅, 王佳莹, 王明坤, 等. 基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J]. 西安交通大学学报, 2016, 50(5): 108-113.
WU Y, WANG J Y, WANG M K, et al.A towered solar thermal power plant based on supercritical CO2 brayton cycle[J]. Journal of Xi’an Jiaotong University, 2016, 50(5): 108-113.
[8] EHSAN M M, GUAN Z Q, GURGENCI H, et al.Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: review and a case study[J]. Renewable and sustainable energy reviews, 2020, 132: 110055.
[9] WHITE M T, BIANCHI G, CHAI L, et al.Review of supercritical CO2 technologies and systems for power generation[J]. Applied thermal engineering, 2021, 185: 116447.
[10] WAGNER M J.Results and comparison from the SAM linear Fresnel technology performance model[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2012.
[11] National Renewable Energy Laboratory (NREL). Solar advisor model (SAM). Version2021.12.2 [software]. [2022 -07-14], https://sam.nrel.gov/download.html.
[12] DUDLEY V E, KOLB G J, MAHONEY A R, et al.Test results: SEGS LS-2 solar collector[R]. Sandia National Laboratory, Albuquerque, US, 1994
[13] SIEBERS D, KRAABEL J S. Estimating convective energy losses from solar central receivers[R]. Livermore (CA): Sandia National Laboratory; 1984. Report No.: SAND-84-8717.
[14] 杜春旭, 吴玉庭, 王普, 等. 塔式太阳能发电系统镜场面积估算方法[C]//中国工程热物理学会, 武汉, 中国, 2011.
DU C X, WU Y T, WANG P, et al.Estimation of heliostat field area for the solar power tower plant[C]//Chinese Society of Engineering Thermophysics, Wuhan, China, 2011.
[15] 王坤. 超临界二氧化碳太阳能热发电系统的高效集成及其聚光传热过程的优化调控研究[D]. 西安: 西安交通大学, 2018.
WANG K.Study on the integration of S-CO2 Brayton cycles in a solar power tower and the optimization of its concentrating and heat transfer processes[D]. Xi’an: Xi’an Jiaotong University, 2018.
[16] KURUP P, TURCHI C. Parabolic trough collector cost update for the system advisor model (SAM)[R]. Golden (CO): National Renewable Energy Laboratory, 2015. Report No.: NREL/TP-6A20-65228.
[17] AKBARI A D, MAHMOUDI S M S. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle[J]. Energy, 2014, 78: 501-512.
[18] PIEROBON L, NGUYEN T V, LARSEN U, et al.Multi-objective optimization of organic Rankine cycles for waste heat recovery: application in an offshore platform[J]. Energy, 2013, 58: 538-549.
[19] SMITH R.Chemical process: design and integration[M]. New Jersey: John Wiley & Sons; 2005.
[20] PARRADO C, MARZO A, FUENTEALBA E, et al.2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants[J]. Renewable and sustainable energy reviews, 2016, 57: 505-514.
[21] MOHAN G, VENKATARAMAN M, GOMEZ-VIDAL J, et al.Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy conversion and management, 2018, 167: 156-164.
[22] TURTON R, BAILIE R, WHITING W, et al.Analysis, synthesis and design of chemical processes[M]. London: Pearson Education, 2008.
[23] 中华人民共和国. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
PRC. China statistical yearbook 2020[M]. Beijing: China Statistics Press, 2020.
[24] KUENLIN A, AUGSBURGER G, GERBER L, et al.Life cycle assessment and environomic optimization of concentrating solar thermal power plants[C]//26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS2013). Gulin, China, 2013.
[25] Weather data[EB/OL]. EnergyPlus, [2022-09-02], https://energyplus.net/weather-location/asia_wmo_region_2/CHN/CHN_Qinghai.Haixi.Delingha.527370_SWERA.
[26] DELKASAR MAHER S, SARVGHAD M, OLIVARES R, et al.Critical components in supercritical CO2 brayton cycle power blocks for solar power systems: degradation mechanisms and failure consequences[J]. Solar energy materials and solar cells, 2022, 242: 111768.
[27] 包子阳, 余继周. 智能优化算法及其MATLAB实例[M]. 北京: 电子工业出版社, 2016.
BAO Z Y, YU J Z.Intelligent optimization algorithm and its MATLAB example[M]. Beijing: Publishing House of Electronics Industry, 2016.
[28] JING R, WANG M, ZHANG Z H, et al.Comparative study of posteriori decision-making methods when designing building integrated energy systems with multi-objectives[J]. Energy and buildings, 2019, 194: 123-139.
PDF(2381 KB)

Accesses

Citation

Detail

Sections
Recommended

/