SHORT-TERM CHARGING LOAD PREDICTION OF REGIONAL ELECTRIC VEHICLES BASED ON GLDSC-CONVAUTOFORMER MODEL

Li Lianbing, Guo Xingchen, Zeng Siming, Liang Jifeng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 90-98.

PDF(4773 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4773 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 90-98. DOI: 10.19912/j.0254-0096.tynxb.2023-1601

SHORT-TERM CHARGING LOAD PREDICTION OF REGIONAL ELECTRIC VEHICLES BASED ON GLDSC-CONVAUTOFORMER MODEL

  • Li Lianbing1, Guo Xingchen2, Zeng Siming3, Liang Jifeng3
Author information +
History +

Abstract

Aiming at the problem of load fluctuation caused by large-scale electric vehicles in the grid-connected process, short-term load prediction of electric vehicles provides decision-making basis for optimal scheduling of electric vehicles. In order to better ensure the stability and reliability of the power grid, a short-term charging load prediction method of electric vehicles is proposed to improve the load prediction accuracy. Firstly, according to the spatiotemporal differences of EV charging on each charging pile, a grey relational degree model based on dynamic time warping under limited warping path length algorithm is constructed. The correlation degree matrix was used as the degree matrix of spectral clustering algorithm, and the gray limited dynamic spectrum clustering algorithm model was constructed. Cluster the daily charging load curves of all electric vehicles to make the clustering data have better periodicity. Secondly, the cluster data were processed by double convolution, and the extracted data features were input into Autoformer respectively to build ConvAutoformer load prediction model, and load prediction was carried out on the cluster results respectively. Finally, the actual charging load data of electric vehicle charging pile was used for example analysis. Experimental results show that the proposed method can effectively improve the accuracy of short-term charging load predict

Key words

electric vehicles / feature extraction / forecasting / limited dynamic time bending distance / grey limited dynamic spectrum clustering / ConvAutoformer

Cite this article

Download Citations
Li Lianbing, Guo Xingchen, Zeng Siming, Liang Jifeng. SHORT-TERM CHARGING LOAD PREDICTION OF REGIONAL ELECTRIC VEHICLES BASED ON GLDSC-CONVAUTOFORMER MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 90-98 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1601

References

[1] 孙辉, 杨帆, 高正男, 等. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化, 2022, 46(8): 95-103.
SUN H, YANG F, GAO Z N, et al.Short-term load forecasting based on mutual information and Bi-directional long short-term memory network considering fluctuation in importance values of features[J]. Automation of electric power systems, 2022, 46(8): 95-103.
[2] 朱坤, 付青. 基于EEMD-Kmeans-ALO-LSTM的短期光伏功率预测[J]. 电源技术, 2023, 47(1): 103-107.
ZHU K, FU Q.A photovoltaic power forecasting method based on EEMD-Kmeans-ALO-LSTM[J]. Chinese journal of power sources, 2023, 47(1): 103-107.
[3] 熊玉辉, 孙帅帅, 李少帅, 等. 基于影响因素权重的光伏组件现场性能退化率分区预测[J]. 太阳能学报, 2023, 44(10): 182-190.
XIONG Y H, SUN S S, LI S S, et al.Zoning prediction of field performance degration rate of PV modules based on weights of influencing factors[J]. Acta energiae solaris sinica, 2023, 44(10): 182-190.
[4] 白璐, 赵鑫, 孔钰婷, 等. 谱聚类算法研究综述[J]. 计算机工程与应用, 2021, 57(14): 15-26.
BAI L, ZHAO X, KONG Y T, et al.Survey of spectral clustering algorithms[J]. Computer engineering and applications, 2021, 57(14): 15-26.
[5] 刘敦楠, 张悦, 彭晓峰, 等. 计及相似日与气象因素的电动汽车充电负荷聚类预测[J]. 电力建设, 2021, 42(2): 43-49.
LIU D N, ZHANG Y, PENG X F, et al.Clustering prediction of electric vehicle charging load considering similar days and meteorological factors[J]. Electric power construction, 2021, 42(2): 43-49.
[6] 王毅, 谷亿, 丁壮, 等. 基于模糊熵和集成学习的电动汽车充电需求预测[J]. 电力系统自动化, 2020, 44(3): 114-121.
WANG Y, GU Y, DING Z, et al.Charging demand forecasting of electric vehicle based on empirical mode decomposition-fuzzy entropy and ensemble learning[J]. Automation of electric power systems, 2020, 44(3): 114-121.
[7] 刘晓悦, 魏宇册. 基于改进灰色关联分析的BA-BP短期负荷预测[J]. 科学技术与工程, 2020, 20(1): 223-227.
LIU X Y, WEI Y C.Short-term load forecasting of BA-BP neural network based on improved grey relational analysis[J]. Science technology and engineering, 2020, 20(1): 223-227.
[8] 徐龙秀, 辛超山, 牛东晓, 等. 基于自适应粒子群参数优化的最小二乘支持向量机用电量预测模型[J]. 科学技术与工程, 2019, 19(6): 136-141.
XU L X, XIN C S, NIU D X, et al.Power consumption prediction model of least squares support vector machine based on adaptive particle swarm optimization[J]. Science technology and engineering, 2019, 19(6): 136-141.
[9] 杨张婧, 阎威武, 王国良, 等. 基于大数据的城市空气质量时空预测模型[J]. 控制工程, 2020, 27(11): 1859-1866.
YANG Z J, YAN W W, WANG G L, et al.Research on spatial-temporal forecasting model for urban air quality monitoring based on large data analysis[J]. Control engineering of China, 2020, 27(11): 1859-1866.
[10] 庞传军, 张波, 余建明. 基于LSTM循环神经网络的短期电力负荷预测[J]. 电力工程技术, 2021, 40(1): 175-180, 194.
PANG C J, ZHANG B, YU J M.Short-term power load forecasting based on LSTM recurrent neural network[J]. Electric power engineering technology, 2021, 40(1): 175-180, 194.
[11] 李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7): 2719-2730.
LI Y Z, LIU X L, XING F F, et al.Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J]. Power system technology, 2021, 45(7): 2719-2730.
[12] 罗颖, 刘雨辰, 米立华, 等. 基于WRF模拟和注意力机制的短期风速预测[J]. 太阳能学报, 2023, 44(9): 302-310.
LUO Y, LIU Y C, MI L H, et al.Short-term wind speed forecast based on WRF simulation and attention mechanism[J]. Acta energiae solaris sinica, 2023, 44(9): 302-310.
[13] 欧阳静, 杨吕, 尹康, 等. 基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测[J]. 太阳能学报, 2022, 43(9): 499-507.
OUYANG J, YANG L, YIN K, et al.Short-term load forecasting method for integrated energy system based on ALIF-LSTM and multi-task learning[J]. Acta energiae solaris sinica, 2022, 43(9): 499-507.
[14] 姚芳, 汤俊豪, 陈盛华, 等. 基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J]. 电力系统保护与控制, 2023, 51(16): 158-167.
YAO F, TANG J H, CHEN S H, et al.Charging load prediction method for electric vehicles based on an ISSA-CNN-GRU model[J]. Power system protection and control, 2023, 51(16): 158-167.
[15] 李恒杰, 朱江皓, 傅晓飞, 等. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013.
LI H J, ZHU J H, FU X F, et al.Ultra-short-term load forecasting of electric vehicle charging stations based on ensemble learning[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1004-1013.
[16] 陈忠华, 朱军, 王育飞, 等. 基于一致性K均值聚类的电动汽车充电负荷建模方法[J]. 现代电力, 2022, 39(3): 338-348.
CHEN Z H, ZHU J, WANG Y F, et al.A modeling method for electric vehicle charging load based on consensus K-means clustering[J]. Modern electric power, 2022, 39(3): 338-348.
[17] 王哲, 万宝, 凌天晗, 等. 基于谱聚类和LSTM神经网络的电动公交车充电负荷预测方法[J]. 电力建设, 2021, 42(6): 58-66.
WANG Z, WAN B, LING T H, et al.Electric bus charging load forecasting method based on spectral clustering and LSTM neural network[J]. Electric power construction, 2021, 42(6): 58-66.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv e-prints, 2017: arXiv: 1706.03762.
[19] KITAEV N, KAISER L, LEVSKAYA A.Reformer: the efficient transformer[J]. arXiv e-prints, 2020: arXiv: 2001.04451.
[20] ZHOU H Y, ZHANG S H, PENG J Q, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106-11115.
[21] 黄飞虎, 赵红磊, 弋沛玉, 等. 一种改进Transformer的电力负荷预测方法[J]. 现代电力, 2023, 40(1): 50-58.
HUANG F H, ZHAO H L, YI P Y, et al.An improved power load forecasting method based on Transformer[J]. Modern electric power, 2023, 40(1): 50-58.
[22] 吴晨, 姚菁, 薛贵元, 等. 基于MMoE多任务学习和长短时记忆网络的综合能源系统负荷预测[J]. 电力自动化设备, 2022, 42(7): 33-39.
WU C, YAO J, XUE G Y, et al.Load forecasting of integrated energy system based on MMoE multi-task learning and LSTM[J]. Electric power automation equipment, 2022, 42(7): 33-39.
PDF(4773 KB)

Accesses

Citation

Detail

Sections
Recommended

/